dc.contributor.author | Pynko, Alexej P. | |
dc.date.accessioned | 2016-04-28T10:15:58Z | |
dc.date.available | 2016-04-28T10:15:58Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/17905 | |
dc.description.abstract | The primary objective of this paper, which is an addendum to the author’s [8], is to apply the general study of the latter to Łukasiewicz’s n-valued logics [4]. The paper provides an analytical expression of a 2(n−1)-place sequent calculus (in the sense of [10, 9]) with the cut-elimination property and a strong completeness with respect to the logic involved which is most compact among similar calculi in the sense of a complexity of systems of premises of introduction rules. This together with a quite effective procedure of construction of an equality determinant (in the sense of [5]) for the logics involved to be extracted from the constructive proof of Proposition 6.10 of [6] yields an equally effective procedure of construction of both Gentzen-style [2] (i.e., 2-place) and Tait-style [11] (i.e., 1-place) minimal sequent calculi following the method of translations described in Subsection 4.2 of [7]. | pl_PL |
dc.description.sponsorship | The work is supported by the National Academy of Sciences of Ukraine. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartofseries | Bulletin of the Section of Logic;3/4 | |
dc.subject | sequent calculus | pl_PL |
dc.subject | Łukasiewicz’s logics | pl_PL |
dc.title | Minimal Sequent Calculi for Łukasiewicz’s Finitely-Valued Logics | pl_PL |
dc.type | Article | pl_PL |
dc.rights.holder | © Copyright by Alexej P. Pynko, Łódź 2015; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2015 | pl_PL |
dc.page.number | 149–153 | pl_PL |
dc.contributor.authorAffiliation | Department of Digital Automata Theory (100), V.M. Glushkov Institute of Cybernetics Academician Glushkov, prosp. 40 Kiev, 03680, Ukraine. | pl_PL |
dc.identifier.eissn | 2449-836X | |
dc.references | Dunn J. M., Algebraic completeness results for R-mingle and its extensions, Journal of Symbolic Logic 35 (1970), pp. 1–13. | pl_PL |
dc.references | Gentzen G., Untersuchungen über das logische Schliessen, Mathematische Zeitschrift 39 (1934), pp. 176–210, 405–431. | pl_PL |
dc.references | Gödel K., Zum intuitionistischen Aussagenkalkül, Anzeiger der Akademie der Wissenschaften im Wien 69 (1932), pp. 65–66. | pl_PL |
dc.references | Łukasiewicz J., O logice trójwartościowej, Ruch Filozoficzny 5 (1920), pp. 170–171. | pl_PL |
dc.references | Pynko A. P., Sequential calculi for many-valued logics with equality determinant, Bulletin of the Section of Logic 33:1 (2004), pp. 23–32. | pl_PL |
dc.references | Pynko A. P., Distributive-lattice semantics of sequent calculi with structural rules, Logica Universalis 3 (2009), no. 1, pp. 59–94. | pl_PL |
dc.references | Pynko A. P., Many-place sequent calculi for finitely-valued logics, Logica Universalis 4 (2010), no. 1, pp. 41–66. | pl_PL |
dc.references | Pynko A. P., Minimal sequent calculi for monotonic chain finitely-valued logics, Bulletin of the Section of Logic 43:1/2 (2014), pp. 99–112. | pl_PL |
dc.references | Rousseau G., Sequents in many-valued logic I, Fundamenta Mathematicae 60 (1967), pp. 23–33. | pl_PL |
dc.references | Schröter K., Methoden zur axiomatisierung beliebiger aussagen- und prädikatenkalküle, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 1 (1955), pp. 241–251. | pl_PL |
dc.references | Tait W. W., Normal derivability in classical logic, The Syntax and Semantics of Infinitary Languages (J. Barwise, ed.), Lecture Notes in Mathematics, no. 72, Springer Verlag, 1968, pp. 204–236. | pl_PL |
dc.contributor.authorEmail | pynko@voliacable.com | pl_PL |
dc.identifier.doi | 10.18778/0138-0680.44.3.4.04 | |
dc.relation.volume | 44 | pl_PL |