Pokaż uproszczony rekord

dc.contributor.authorPynko, Alexej P.
dc.date.accessioned2016-04-28T10:15:58Z
dc.date.available2016-04-28T10:15:58Z
dc.date.issued2015
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/17905
dc.description.abstractThe primary objective of this paper, which is an addendum to the author’s [8], is to apply the general study of the latter to Łukasiewicz’s n-valued logics [4]. The paper provides an analytical expression of a 2(n−1)-place sequent calculus (in the sense of [10, 9]) with the cut-elimination property and a strong completeness with respect to the logic involved which is most compact among similar calculi in the sense of a complexity of systems of premises of introduction rules. This together with a quite effective procedure of construction of an equality determinant (in the sense of [5]) for the logics involved to be extracted from the constructive proof of Proposition 6.10 of [6] yields an equally effective procedure of construction of both Gentzen-style [2] (i.e., 2-place) and Tait-style [11] (i.e., 1-place) minimal sequent calculi following the method of translations described in Subsection 4.2 of [7].pl_PL
dc.description.sponsorshipThe work is supported by the National Academy of Sciences of Ukraine.pl_PL
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofseriesBulletin of the Section of Logic;3/4
dc.subjectsequent calculuspl_PL
dc.subjectŁukasiewicz’s logicspl_PL
dc.titleMinimal Sequent Calculi for Łukasiewicz’s Finitely-Valued Logicspl_PL
dc.typeArticlepl_PL
dc.rights.holder© Copyright by Alexej P. Pynko, Łódź 2015; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2015pl_PL
dc.page.number149–153pl_PL
dc.contributor.authorAffiliationDepartment of Digital Automata Theory (100), V.M. Glushkov Institute of Cybernetics Academician Glushkov, prosp. 40 Kiev, 03680, Ukraine.pl_PL
dc.identifier.eissn2449-836X
dc.referencesDunn J. M., Algebraic completeness results for R-mingle and its extensions, Journal of Symbolic Logic 35 (1970), pp. 1–13.pl_PL
dc.referencesGentzen G., Untersuchungen über das logische Schliessen, Mathematische Zeitschrift 39 (1934), pp. 176–210, 405–431.pl_PL
dc.referencesGödel K., Zum intuitionistischen Aussagenkalkül, Anzeiger der Akademie der Wissenschaften im Wien 69 (1932), pp. 65–66.pl_PL
dc.referencesŁukasiewicz J., O logice trójwartościowej, Ruch Filozoficzny 5 (1920), pp. 170–171.pl_PL
dc.referencesPynko A. P., Sequential calculi for many-valued logics with equality determinant, Bulletin of the Section of Logic 33:1 (2004), pp. 23–32.pl_PL
dc.referencesPynko A. P., Distributive-lattice semantics of sequent calculi with structural rules, Logica Universalis 3 (2009), no. 1, pp. 59–94.pl_PL
dc.referencesPynko A. P., Many-place sequent calculi for finitely-valued logics, Logica Universalis 4 (2010), no. 1, pp. 41–66.pl_PL
dc.referencesPynko A. P., Minimal sequent calculi for monotonic chain finitely-valued logics, Bulletin of the Section of Logic 43:1/2 (2014), pp. 99–112.pl_PL
dc.referencesRousseau G., Sequents in many-valued logic I, Fundamenta Mathematicae 60 (1967), pp. 23–33.pl_PL
dc.referencesSchröter K., Methoden zur axiomatisierung beliebiger aussagen- und prädikatenkalküle, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 1 (1955), pp. 241–251.pl_PL
dc.referencesTait W. W., Normal derivability in classical logic, The Syntax and Semantics of Infinitary Languages (J. Barwise, ed.), Lecture Notes in Mathematics, no. 72, Springer Verlag, 1968, pp. 204–236.pl_PL
dc.contributor.authorEmailpynko@voliacable.compl_PL
dc.identifier.doi10.18778/0138-0680.44.3.4.04
dc.relation.volume44pl_PL


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord