Show simple item record

dc.contributor.authorTourlakis, George
dc.date.accessioned2017-05-16T09:59:08Z
dc.date.available2017-05-16T09:59:08Z
dc.date.issued2016
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/21621
dc.description.abstractReference [12] introduced a novel formula to formula translation tool (“formulators”) that enables syntactic metatheoretical investigations of first-order modal logics, bypassing a need to convert them first into Gentzen style logics in order to rely on cut elimination and the subformula property. In fact, the formulator tool, as was already demonstrated in loc. cit., is applicable even to the metatheoretical study of logics such as QGL, where cut elimination is (provably, [2]) unavailable. This paper applies the formulator approach to show the independence of the axiom schema _A ! _8xA of the logics M3 and ML3 of [17, 18, 11, 13]. This leads to the conclusion that the two logics obtained by removing this axiom are incomplete, both with respect to their natural Kripke structures and to arithmetical interpretations. In particular, the so modified ML3 is, similarly to QGL, an arithmetically incomplete first-order extension of GL, but, unlike QGL, all its theorems have cut free proofs. We also establish here, via formulators, a stronger version of the disjunction property for GL and QGL without going through Gentzen versions of these logics (compare with the more complex proofs in [2, 8]).en_GB
dc.description.sponsorshipThis research was partially supported by NSERC grant No. 8250.en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic;1
dc.subjectModal logicen_GB
dc.subjectGLen_GB
dc.subjectfirst-order logicen_GB
dc.subjectproof theoryen_GB
dc.subjectcut eliminationen_GB
dc.subjectreflection propertyen_GB
dc.subjectdisjunction propertyen_GB
dc.subjectquantified modal logicen_GB
dc.subjectQGLen_GB
dc.subjectarithmetical completenessen_GB
dc.titleA New Arithmetically Incomplete First- Order Extension of Gl All Theorems of Which Have Cut Free Proofsen_GB
dc.typeArticleen_GB
dc.rights.holder© Copyright by Authors, Łódź 2016; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2016en_GB
dc.page.number[17]-31
dc.identifier.eissn2449-836X
dc.referencesS. Artemov and G. Dzhaparidze, Finite Kripke Models and Predicate Logics of Provability, J. of Symb. Logic 55 (1990), no. 3, pp. 1090–1098.en_GB
dc.referencesA. Avron, On modal systems having arithmetical interpretations, J. of Symb. Logic 49 (1984), no. 3, pp. 935–942.en_GB
dc.referencesG. Boolos, The Logic of Provability, Cambridge University Press, Cambridge, 1993.en_GB
dc.referencesN. Bourbaki, Éléments de Mathématique; Théorie des Ensembles, Hermann, Paris, 1966.en_GB
dc.referencesH. B. Enderton, A mathematical introduction to logic, Academic Press, New York, 1972.en_GB
dc.referencesF. Kibedi and G. Tourlakis, A modal extension of weak generalisation predicate logic, Logic Journal of the IGPL 14 (2006), no. 4, pp. 591–621.en_GB
dc.referencesF. Montagna, The predicate modal logic of provability, Notre Dame J. of Formal Logic 25 (1984), pp. 179–189.en_GB
dc.referencesG. Sambin and S. Valentini, A Modal Sequent Calculus for a Fragment of Arithmetic, Studia Logica 39 (1980), no. 2/3, pp. 245–256.en_GB
dc.referencesThe Modal Logic of Provability. The Sequential Approach, Journal of Philosophical Logic 11 (1982), no. 3, pp. 311–342.en_GB
dc.referencesK. Schütte, Proof Theory, Springer-Verlag, New York, 1977.en_GB
dc.referencesY. Schwartz and G. Tourlakis, On the proof-theory of two formalisations of modal first-order logic, Studia Logica 96 (2010), no. 3, pp. 349–373.en_GB
dc.referencesA Proof Theoretic Tool for First-Order Modal Logic, Bulletin of the Section of Logic 42 (2013), no. 3–4, pp. 93–110.en_GB
dc.referencesOn the Proof-Theory of a First-Order Version of GL, J. of Logic and Logical Philosophy 23 (2014), no. 3, pp. 329–363.en_GB
dc.referencesJ. R. Shoenfield, Mathematical Logic, Addison-Wesley, Reading, Massachusetts, 1967.en_GB
dc.referencesC. Smoryński, Self-Reference and Modal Logic, Springer-Verlag, New York, 1985.en_GB
dc.referencesG. Tourlakis, Lectures in Logic and Set Theory; Volume 1: Mathematical Logic, Cambridge University Press, Cambridge, 2003.en_GB
dc.referencesG. Tourlakis and F. Kibedi, A modal extension of first order classical logic – Part I, Bulletin of the Section of Logic 32 (2003), no. 4, pp. 165–178.en_GB
dc.referencesA modal extension of first order classical logic – Part II, Bulletin of the Section of Logic 33 (2004), no. 1, pp. 1–10.en_GB
dc.referencesV. A. Vardanyan, On the predicate logic of provability, “Cybernetics”, Academy of Sciences of the USSR (in Russian) (1985).en_GB
dc.referencesR. E. Yavorsky, On arithmetical completeness of first-order logics, Advances in Modal Logic (F. Wolter H. Wansing M. de Rijke and M. Zakharyaschev, ed.), vol. 3, CSLI Publications, Stanford University, Stanford, USA, 2001, pp. 1–16.en_GB
dc.contributor.authorEmailjanciu@uni.lodz.pl
dc.identifier.doi10.18778/0138-0680.45.1.02
dc.relation.volume45en_GB


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record