dc.contributor.author | Glenszczyk, Anna | |
dc.date.accessioned | 2017-07-10T12:08:35Z | |
dc.date.available | 2017-07-10T12:08:35Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/22182 | |
dc.description.abstract | We investigate monadic fragments of Intuitionistic Control Logic (ICL), which is obtained from Intuitionistic Propositional Logic (IPL) by extending language of IPL by a constant distinct from intuitionistic constants. In particular we present the complete description of purely negational fragment and show that most of monadic fragments are finite. | en_GB |
dc.language.iso | en | en_GB |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | en_GB |
dc.relation.ispartofseries | Bulletin of the Section of Logic;3/4 | |
dc.subject | Intuitionistic Control Logic | en_GB |
dc.subject | Intuitionistic Logic | en_GB |
dc.subject | Combining Logic | en_GB |
dc.subject | Control Operators | en_GB |
dc.title | Monadic Fragments of Intuitionistic Control Logic | en_GB |
dc.type | Article | en_GB |
dc.rights.holder | © Copyright by Authors, Łódź 2016; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2016 | en_GB |
dc.page.number | [143]-153 | |
dc.contributor.authorAffiliation | University of Silesia | |
dc.identifier.eissn | 2449-836X | |
dc.references | A. Chagrov, M. Zakharyaschev, Modal Logic, Oxford Logic Guides 35 (1997). | en_GB |
dc.references | A. Glenszczyk, Negational Fragment of Intuitionistic Control Logic, Studia Logica 103:6 (2015), pp. 1101–1121. | en_GB |
dc.references | C. Liang, D. Miller, An intuitionistic Control Logic, to appear. | en_GB |
dc.references | C. Liang, D. Miller, Kripke Semantics and Proof Systems for Combining Intuitionistic Logic and Classical Logic, Ann. Pure Appl. Logic 164:2 (2013), pp. 86–111. | en_GB |
dc.references | C. Liang, D. Miller, Unifying classical and intuitionistic logics for computational control, Proceedings of LICS (2013). | en_GB |
dc.references | A.S. Troelstra, D. van Dalen, Constructivism in Mathematics, Studies in Logic and the Foundations of Mathematics (2014). | en_GB |
dc.contributor.authorEmail | anna.glenszczyk@us.edu.pl | |
dc.identifier.doi | 10.18778/0138-0680.45.3.4.01 | |
dc.relation.volume | 45 | en_GB |