Pokaż uproszczony rekord

dc.contributor.authorStaruch, Bogdan
dc.contributor.authorStaruch, Bożena
dc.date.accessioned2017-07-10T12:08:38Z
dc.date.available2017-07-10T12:08:38Z
dc.date.issued2016
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/22186
dc.description.abstractWe describe here a special subdirect decomposition of algebras with modular congruence lattice. Such a decomposition (called a star-decomposition) is based on the properties of the congruence lattices of algebras. We consider four properties of lattices: atomic, atomless, locally uniform and anti-uniform. In effect, we describe a star-decomposition of a given algebra with modular congruence lattice into two or three parts associated to these properties.en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic;3/4
dc.subjectuniversal algebraen_GB
dc.subjectalgebraic latticeen_GB
dc.subjectcongruence latticeen_GB
dc.subjectatomic latticeen_GB
dc.subjectmodular latticeen_GB
dc.subjectuniform latticeen_GB
dc.subjectsubdirect producten_GB
dc.subjectstar-producten_GB
dc.subjectdecomposition of algebraen_GB
dc.titleDecomposition of Congruence Modular Algebras into Atomic, Atomless Locally Uniform and Anti-Uniform Partsen_GB
dc.typeArticleen_GB
dc.rights.holder© Copyright by Authors, Łódź 2016; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2016en_GB
dc.page.number[199]-211
dc.contributor.authorAffiliationUniversity of Warmia and Mazury, Olsztyn, Department of Mathematics and Computer Science
dc.identifier.eissn2449-836X
dc.referencesS. Burris, H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, (1981).en_GB
dc.referencesA.W. Goldie, The structure of prime rings under ascending chain conditions, Proc. London Math. Soc. (3), 8 (1958), pp. 589–608.en_GB
dc.referencesG. Grätzer, General Lattice Theory. Second edition. Birkhauser Verlag, Basel (1998).en_GB
dc.referencesP. Grzeszczuk, E. R. Puczyłowski, On Goldie and dual Goldie dimensions, J. Pure Appl. Algebra 31 (1984), pp. 47–54.en_GB
dc.referencesP. Grzeszczuk, E. R. Puczyłowski, On infinite Goldie dimension of modular lattices and modules, J. Pure Appl. Algebra 35 (1985), pp. 151–155.en_GB
dc.referencesJ. Krempa, On lattices, modules and groups with many uniform elements, Algebra Discrete Math., 1 (2004), pp. 75–86.en_GB
dc.referencesE. R. Puczyłowski, A linear property of Goldie dimension of modules and modular lattices, J. Pure Appl. Algebra 215 (2011), pp. 1596–1605.en_GB
dc.referencesB. Staruch, Irredundant decomposition of algebras into one-dimensional factors, submitted to Bulletin of the Section of Logic (2016).en_GB
dc.referencesA. P. Zolotarev, On balanced lattices and Goldie dimension of balanced lattices, Siberian Math. J., 35:3 (1994), pp. 539–546.en_GB
dc.contributor.authorEmailbstar@uwm.edu.pl
dc.contributor.authorEmailbostar@matman.uwm.edu.pl
dc.identifier.doi10.18778/0138-0680.45.3.4.05
dc.relation.volume45en_GB


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord