Show simple item record

dc.contributor.authorKolany, Adam
dc.contributor.authorWrobel, Miroslaw
dc.date.accessioned2017-07-10T12:08:39Z
dc.date.available2017-07-10T12:08:39Z
dc.date.issued2016
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/22188
dc.description.abstractProgress in the medical diagnostic is relentlessly pushing the measurement technology as well with its intertwined mathematical models and solutions. Mathematics has applications to many problems that are vital to human health but not for all. In this article we describe how the mathematics of acoustocerebrography has become one of the most important applications of mathematics to the problems of brain monitoring as well we will show some algebraic problems which still have to be solved. Acoustocerebrography ([4, 1]) is a set of techniques of visualizing the state of (human) brain tissue and its changes with use of ultrasounds, which mainly rely on a relation between the tissue density and speed of propagation for ultrasound waves in this medium. Propagation speed or, equivalently, times of arriving for an ultrasound pulse, can be inferred from phase relations for various frequencies. Since, due to Kramers-Kronig relations,the propagation speeds depend significantly on the frequency of investigated waves, we consider multispectral wave packages of the form W (n) = ∑Hh=1 Ah · sin(2π ·fh · n/F + ψh), n = 0, . . . , N – 1 with appropriately chosen frequencies fh, h = 1, . . . ,H, amplifications Ah, h = 1, . . . ,H, start phases ψh, h = 1, . . . , H and sampling frequency F. In this paper we show some problems of algebraic and, to some extend, algorithmic nature which raise up in this topic. Like, for instance, the influence of relations between the signal length and frequency values on the error on estimated phases or on neutralizing alien frequencies. Another problem is finding appropriate initial phases for avoiding improper distributions of peaks in the resulting signal or finding a stable algorithm of phase unwinding which is resistant to sudden random disruptions.en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic;3/4
dc.subjectACGen_GB
dc.subjectAcoustocerebrographyen_GB
dc.subjectStrokeen_GB
dc.subjectBrain Monitoringen_GB
dc.subjectNeurologyen_GB
dc.subjectSignal processingen_GB
dc.subjectmultispectral signal decompositionen_GB
dc.subjectmatrix conditionen_GB
dc.subjecterror estimationen_GB
dc.subjectphase unwindingen_GB
dc.titleSome Algebraic and Algorithmic Problems in Acoustocerebrographyen_GB
dc.typeArticleen_GB
dc.rights.holder© Copyright by Authors, Łódź 2016; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2016en_GB
dc.page.number[239]-256
dc.identifier.eissn2449-836X
dc.referencesM. Bogdan, et al., Computer Aided Multispectral Ultrasound Diagnostics Brain Health Monitoring System Based on Acoustocerebrography, XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016, IFMBE Proceedings Volume 57.en_GB
dc.referencesM. O’Donnel, E. T. Jayess and J. G. Miller, Kramers-Kronig relationship between ultrasonic attenuation and phase velocity, J. Acoust. Soc. Am. 69(3), March 1981.en_GB
dc.referencesJ. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Springer Science Business Media, March 20.en_GB
dc.referencesM. Wrobel, et al., On ultrasound classification of stroke risk factors from randomly chosen respondents using non-invasive multispectral ultrasonic brain measurements and adaptive profiles, Biocybern Biomed Eng (2015), http://dx.doi.org/ 10.1016/j.bbe.2015.10.004.en_GB
dc.contributor.authorEmailadam.kolany@sonovum.de
dc.contributor.authorEmailmiroslaw.wrobel@sonovum.de
dc.identifier.doi10.18778/0138-0680.45.3.4.07
dc.relation.volume45en_GB


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record