Pokaż uproszczony rekord

dc.contributor.authorSzymańska, Agataen
dc.contributor.authorZalewska, Elżbietaen
dc.date.accessioned2018-04-03T08:25:09Z
dc.date.available2018-04-03T08:25:09Z
dc.date.issued2018-03-20en
dc.identifier.issn1508-2008en
dc.identifier.urihttp://hdl.handle.net/11089/24290
dc.description.abstractThe aim of this article is to investigate the similarities between the EU countries in terms of achieving the Europe 2020 Strategy goals. Due to the latest data availability, the analysis is based on the year 2014. The study uses grouping methods, including the k-means algorithm. The results indicate the existence of a division between the “old” and “new” European Union Member States. However, as is shown, some of the Strategy’s targets have already been achieved and some indicators have been nearly achieved, whereas among others, such as implementation of the headline indicator for investment in the R&D sector as a % of GDP is uncertain. The average performance of headline indicators for the EU–15 and EU–13 countries seems to be similar and exhibits the same trend of changes.en
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen
dc.relation.ispartofseriesComparative Economic Research;1en
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0en
dc.subjectEurope 2020 Strategyen
dc.subjectcluster analysisen
dc.subjectEuropean Unionen
dc.subjectC10en
dc.subjectQ01en
dc.titleTowards the Goals of the Europe 2020 Strategy: Convergence or Divergence of the European Union Countries?en
dc.page.number67-82en
dc.contributor.authorAffiliationInstitute of Economics, University of Lodzen
dc.contributor.authorAffiliationInstitute of Statistics and Demography, University of Lodzen
dc.referencesDirective 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC, Official Journal of the European Union, L 315/1.en
dc.referencesDomański Cz. (ed.), Białek J., Bolonek-Lasoń K., Mikulec A. (2011), Nieklasyczne metody oceny efektywności i ryzyka. Otwarte fundusze emerytalne. PWE, Warszawa.en
dc.referencesDziechciarz J. (ed.) (2003), Ekonometria. Metody, przykłady, zdania. Wydawnictwo Akademii Ekonomicznej im. Oskara Langego we Wrocławiu, Wrocław.en
dc.referencesEuropean Commission (2010), EUROPE 2020. A Strategy for Smart, Sustainable and Inclusive Growth, Communication from the Commission, Brussels, 3.3.2010.en
dc.referencesEuropean Commission (2010b), Lisbon Strategy Evaluation Document. SEC (2010) 114 final. Brussels. 2 February 2010.en
dc.referencesEuropean Commssion (2012), The European Union Explained: Europe 2020: Europe’s Growth Strategy, European Commission, Belgium.en
dc.referencesEuropean Council (2000), Lisbon European Council 23 and 24 March 2000 Presidency Conclusions.en
dc.referencesEuropean Council (2008), Presidency Conclusions. 7652/1/08 REV 1. Brussels. 13–14 March 2008.en
dc.referencesEuropean Council (2010c), Council of the European Union. Council Conclusions on Europe 2020, 7586/2010, Brussels, 16 March 2010.en
dc.referencesEurostat (2016), Smarter, Greener, More Inclusive? – Indicators to Support the Europe 2020 strategy, Eurostat.en
dc.referencesMilligan G.W., Cooper M.C. (1985), An Examination of Procedures for Determining the Number of Clusters in a Data Set, ‘Psychometrika’, Volume 50, Issue 2, pp. 159–179 doi: 10.1007/BF02294245en
dc.referencesMojena, R. (1977), Hierarchical Grouping Methods and Stopping Rules; An Evaluation, ‘Computer Journal‘, No. 20, 359–363.en
dc.referencesNatali D. (2010), The Lisbon Strategy, Europe 2020 and the Crisis in Between [in:] E. Marlier, D. Natali (eds.), Europe 2020: Towards a More Social EU? P.I.E. Peter Lang, Brussels.en
dc.referencesStanisz A. (2007), Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny. Tom 3 – Analizy wielowymiarowe, StatSoft, Kraków.en
dc.referencesWard J. H. (1963), Hierarchical Grouping to Optimize an Objective Function, ‘Journal of the American Statistical Association‘, 58, 236–244. doi: 10.1080/01621459.1963.10500845en
dc.contributor.authorEmailSzymańska, Agata - agata.szymanska@uni.lodz.plen
dc.contributor.authorEmailZalewska, Elżbieta - zalewska.e@uni.lodz.plen
dc.identifier.doi10.2478/cer-2018-0004en
dc.relation.volume21


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.