dc.contributor.author | Karpenko, Alexander S. | |
dc.date.accessioned | 2018-04-24T08:00:08Z | |
dc.date.available | 2018-04-24T08:00:08Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/24560 | |
dc.description.abstract | The paper discusses functional properties of some four-valued logics which are the expansions of four-valued Belnap’s logic DM4. At first, we consider the logics with two designated values, and then logics defined by matrices having the same underlying algebra, but with a different choice of designated values, i.e. with one designated value. In the preceding literature both approaches were developed independently. Moreover, we present the lattices of the functional expansions of DM4. | en_GB |
dc.description.sponsorship | Zadanie „ Wdrożenie platformy Open Journal System dla czasopisma „ Bulletin of the Section of Logic” finansowane w ramach umowy 948/P-DUN/2016 ze środków Ministra Nauki i Szkolnictwa Wyższego przeznaczonych na działalność upowszechniającą naukę. | en_GB |
dc.language.iso | en | en_GB |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | en_GB |
dc.relation.ispartofseries | Bulletin of the Section of Logic;1/2 | |
dc.subject | Belnap’s four-valued logic | en_GB |
dc.subject | expansions and functional properties | en_GB |
dc.subject | lattices | en_GB |
dc.title | Four-Valued Logics BD and DM4: Expansions | en_GB |
dc.type | Article | en_GB |
dc.rights.holder | © Copyright by Authors, Łódź 2017; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2017 | en_GB |
dc.page.number | [33]-45 | |
dc.contributor.authorAffiliation | Russian Academy of Sciences, Department of Logic, Institute of Philosophy | |
dc.identifier.eissn | 2449-836X | |
dc.references | O. M. Anshakov and S. V. Rychkov, On the axiomatization of finite-valued logical calculi, Math. USSR Sbornik 51 (1985), pp. 473–491. | en_GB |
dc.references | O. M. Anshakov and S. V. Rychkov, On finite-valued propositional logical calculi, Notre Dame Journal of Formal Logic 36, 4 (1995), pp. 606–629. | en_GB |
dc.references | O. Arieli and A. Avron, The value of four values, Artificial Intelligence 102 (1998), pp. 97–141. | en_GB |
dc.references | N. D. Belnap. A useful four-valued logic, [in:] G. Epstein and J. M. Dunn (eds.), Modern Uses of Multiple-Valued Logic, Reidel, Dordrecht, 1977, pp. 7–37. | en_GB |
dc.references | J.-Y. Béziau, A new four-valued approach to modal logic, Logique et Analyse 54, 213 (2011), pp. 109–121. | en_GB |
dc.references | A. Białynicki-Birula and H. Rasiowa, On the representation of quasi-Boolean algebras, Bulletin de la Academie Polonaise des Sciences, Cl. III, 5 (1957), pp. 259–261. | en_GB |
dc.references | R. Cignoli, Moisil algebras, Notas deMathematica, No. 27, Universidad Nacional del Sur. Bahia Blanca, 1970. | en_GB |
dc.references | M. De and H. Omori, Classical negation and expansions of Belnap-Dunn logic, Studia Logica 103, 4 (2015), pp. 825–851. | en_GB |
dc.references | N. M. Ermolaeva and A. A. Mučnik, A modal extensions of Hao Wang-type of logical calculi, [in:] D. A. Bočvar (ed.), Investigations on Formalized Language and Non-Classical Logics, NAUKA Publishers, Moscow, 1974, pp. 172–193 (in Russian). | en_GB |
dc.references | N. M. Ermolaeva and A. A. Mučnik, Modal logics defined by endomorpismus in distributive lattices, [in:] D. A. Bočvar and V. N. Grishin (eds.), Investigations on the Set Theory and Non-classical Logics, NAUKA Publishers, Moscow, 1976, pp. 229–246 (in Russian). | en_GB |
dc.references | N. M. Ermolaeva and A. A. Mučnik, Functionally closed 4-valued extensions of Boolean algebras and the corresponding logics, [in:] A. I. Mihailov (ed.), Investigations on Non-classical Logics and the Set Theory, NAUKA Publishers, Moscow, 1979, pp. 298–315 (in Russian). | en_GB |
dc.references | M. Fitting, Bilattices and the theory of truth, Journal of Philosophical Logic 18 (1989), pp. 225–256. | en_GB |
dc.references | J. M. Font, Belnap’s four-valued logic and De Morgan lattices, Logic Journal of the IGPL 5, 3 (1997), pp. 413–440. | en_GB |
dc.references | M. L. Ginsberg, Multivalued logics: A uniform approach to inference in artificial intelligence, Computational Intelligence 4, 3 (1988), pp. 265–315. | en_GB |
dc.references | G. Iorgulescu, Connections between MVn algebras and n-valued Łukasiewicz-Moisil algebras Part I, Discrete Mathematics 181 (1998), pp. 155–177. | en_GB |
dc.references | S. V. Jablonski, Functional constructions in k-valued logics, Studies of V. A. Steklov Mathematical Institute 51 (1958), pp. 5–142 (in Russian). | en_GB |
dc.references | A. S. Karpenko, Von Wright’s truth logic and around, Logical Investigations 19 (2013), pp. 39–50. | en_GB |
dc.references | A. S. Karpenko, Lattices of four-valued modal logics, Logical Investigations 21, 1 (2015), pp. 122–137 (in Russian). | en_GB |
dc.references | D. Lau, Function Algebras on Finite Sets: A Basic Course on Many-Valued Logic and Clone Theory, Springer-Verlag, Berlin 2006. | en_GB |
dc.references | A. S. Karpenko and A. V. Chagrov, Modal propositional truth logic Tr and its completeness, Logical Investigations 22, 1 (2016), pp. 13–31 (in Russian). | en_GB |
dc.references | E. J. Lemmon, Algebraic semantics for modal logic I, The Journal of Symbolic Logic 31 (1966), pp. 46–65. | en_GB |
dc.references | C. I. Lewis and C. H. Langford, Symbolic Logic, N. Y., 1932 (2nd ed. in 1959). | en_GB |
dc.references | L. L. Maksimova, Interpolation theorems in modal logics and amalgamable varieties of topoboolean algebras, Algebra i Logica 18, 5 (1979), pp. 556–586 (in Russian). | en_GB |
dc.references | G.Malinowski,Many-Valued Logics, The Clarendon Press, Oxford 1993. | en_GB |
dc.references | H. Omori and K. Sano, Generalizing functional completeness in Belnap-Dunn logic, Studia Logica 103, 5 (2015), pp. 883–917. | en_GB |
dc.references | A. Pietz and U. Rivieccio, Nothing but the Truth, Journal of Philosophical Logic 42, 1 (2013), pp. 125–135. | en_GB |
dc.references | E. L Post, Introduction to a general theory of elementary propositions, American Journal of Mathematics 43, 3 (1921), pp. 163–185. | en_GB |
dc.references | A. P. Pynko, Functional completeness and axiomatizability within Belnap’s four-valued logic and its expansion, Journal of Applied Non-Classical Logics 9, 1 (1999), pp. 61–105. | en_GB |
dc.references | J. B. Rosser and A. R. Turquette, Many-Valued Logics. North-Holland, Amsterdam 1952. | en_GB |
dc.references | P. Ruet, Complete sets of connectives and complete sequent calculus for Belnap’s logic, Tech. rep., Ecole Normal Superieure, 1966. Logic Colloquium 96. Document LIENS-96-28. | en_GB |
dc.references | K. Segerberg, On the logic of ‘To-morrow’, Theoria 33, 1 (1967), pp. 46–52. | en_GB |
dc.references | B. Sobochiński, Modal system S4.4, Notre Dame Journal of Formal Logic 5, 4, (1964), pp. 305–312. | en_GB |
dc.references | B. Sobochiński, Certain extensions of modal system S4, Notre Dame Journal of Formal Logic 11, 3 (1970), pp. 347–367. | en_GB |
dc.references | R. Wójcicki and G. Malinowski (eds.) Selected Papers on Łukasiewicz Sentential Calculi. OSSOLINEUM, Wroclaw 1977. | en_GB |
dc.references | G. H. von Wright, Truth-logics, Logique et Analyse 30, 120 (1987), pp. 311–334 (repr. in Acta Philosopica Fennica 60 (1996), pp. 71–91). | en_GB |
dc.contributor.authorEmail | as.karpenko@gmail.com | |
dc.identifier.doi | 10.18778/0138-0680.46.1.2.04 | |
dc.relation.volume | 46 | en_GB |