Show simple item record

dc.contributor.authorPietruszczak, Andrzej
dc.date.accessioned2018-04-24T08:00:09Z
dc.date.available2018-04-24T08:00:09Z
dc.date.issued2017
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/24565
dc.description.abstractThis is the first, out of two papers, in which we identify all logics between C1 and S5 having the same theses without iterated modalities. All these logics canbe divided into certain groups. Each such group depends only on which of thefollowing formulas are theses of all logics from this group: (N), (T), (D), ⌜(T)∨ ☐q⌝,and for any n 0 a formula ⌜(T) ∨ (altn)⌝, where (T) has not the atom ‘q’, and(T) and (altn) have no common atom. We generalize Pollack’s result from [12],where he proved that all modal logics between S1 and S5 have the same theseswhich does not involve iterated modalities (i.e., the same first-degree theses).en_GB
dc.description.sponsorshipZadanie „ Wdrożenie platformy Open Journal System dla czasopisma „ Bulletin of the Section of Logic” finansowane w ramach umowy 948/P-DUN/2016 ze środków Ministra Nauki i Szkolnictwa Wyższego przeznaczonych na działalność upowszechniającą naukę.en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic;1/2
dc.subjectfirst-degree theses of modal logicsen_GB
dc.subjecttheses without iterated modalitiesen_GB
dc.subjectPollack’s theory of Basic Modal Logicen_GB
dc.subjectbasic theories for modal logics between C1 and S5en_GB
dc.titleOn Theses Without Iterated Modalities of Modal Logics Between C1 and S5. Part 1en_GB
dc.typeArticleen_GB
dc.rights.holder© Copyright by Authors, Łódź 2017; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2017en_GB
dc.page.number[111]-133
dc.contributor.authorAffiliationNicolaus Copernicus University in Toruń, Department of Logic, ul. Moniuszki 16, 87–100 Toruń, Poland
dc.identifier.eissn2449-836X
dc.referencesB. F. Chellas, Modal Logic. An Introduction, Cambridge University Press: Cambridge, 1980.en_GB
dc.referencesB. F. Chellas and K. Segerberg, Modal logics in the vicinty of S1, Notre Dame Journal of Formal Logic 37 (1) (1996), pp. 1–24.en_GB
dc.referencesR. A. Girle, S1 ≠ S0.9 , Notre Dame Journal of Formal Logic 16 (1975), pp. 339–344.en_GB
dc.referencesG. E. Hughes and M. J. Cresswell, A New Introduction to Modal Logic, Routledge: London and New York, 1996.en_GB
dc.referencesS. A. Kripke, Semantical analisis of modal logic. II: Non-normal modal propositional calculi, [in:] J. W. Addison, L. Henkin, and A. Tarski (eds.), The Theory of Models. Proc. of the 1963 International Symposium at Berkeley, pp. 206–220, North Holland: Amsterdem, 1965.en_GB
dc.referencesE. J. Lemmon, New fundations for Lewis modal systems, The Journal of Symbolic Logic 22 (2) (1957), pp. 176–186. DOI: 10.2307/2964179en_GB
dc.referencesE. J. Lemmon, Algebraic semantics for modal logics I, The Journal of Symbolic Logic 31 (1) (1966), pp. 46–65. DOI: 10.2307/2270619en_GB
dc.referencesE. J. Lemmon, in collaboration with D. Scott, „Lemmon Notes”: An Introduction to Modal Logic, edited by K. Segerberg, no. 11 in the American Philosophical Quarterly Monograph Series, Basil Blackwell: Oxford, 1977.en_GB
dc.referencesA. Pietruszczak, Simplified Kripke style semantics for some very weak modal logics, Logic and Logical Philosophy 18 (3–4) (2010), pp. 271–296. DOI: 10.12775/LLP.2009.013en_GB
dc.referencesA. Pietruszczak, Semantical investigations on some weak modal logics. Part I, Bulletin of the Section of Logic 41 (1/2) (2012), pp. 33–50.en_GB
dc.referencesA. Pietruszczak, Semantical investigations on some weak modal logics. Part II, Bulletin of the Section of Logic 41 (3/4) (2012), pp. 109–130.en_GB
dc.referencesJ. L. Pollack, Basic Modal Logic, The Journal of Symbolic Logic 32 (3) (1967), pp. 355–365. DOI: 10.2307/2270778en_GB
dc.referencesG. Priest, An Introduction to Non-Classical Logic, 2th edition, Cambridge University Press, 2008. DOI: 10.1017/CBO9780511801174en_GB
dc.referencesR. Routley, Decision procedure and semantics for C1, E1 and S0.5◦, Logique et Analyse 44 (1968), pp. 468–471.en_GB
dc.referencesK. Segerberg, An Essay in Classical Modal Logic, vol. I and vol. II, Uppsala, 1971.en_GB
dc.referencesG. Takeuti, Proof Theory, North-Holland: Amsterdam, 1975.en_GB
dc.referencesM. Zakharyaschev, F. Wolter, and A. Chagrov, Advanced modal logic, in D. M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, 2nd Edition, Volume 3, pp. 83–266. Kluwer Academic Publishers, 2001. DOI: 10.1007/978-94-017-0454-0en_GB
dc.contributor.authorEmailAndrzej.Pietruszczak@umk.pl
dc.identifier.doi10.18778/0138-0680.46.1.2.09
dc.relation.volume46en_GB


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record