Show simple item record

dc.contributor.authorJarmużek, Tomasz
dc.contributor.authorKlonowski, Mateusz
dc.contributor.authorMalinowski, Jacek
dc.date.accessioned2018-06-22T13:54:32Z
dc.date.available2018-06-22T13:54:32Z
dc.date.issued2017
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/25175
dc.description.abstractWe define and investigate from a logical point of view a family of consequence relations defined in probabilistic terms. We call them relations of supporting, and write: |≈w , where w is a probability function on a Boolean language. A |≈w B iff the fact that A is the case does not decrease a probability of being B the case. Finally, we examine the intersection of |≈w , for all w, and give some formal properties of it.en_GB
dc.description.sponsorshipNational Science Centre, Poland, numbers of grants: 2015/19/B/HS1/02478, 2015/19/N/HS1/02401.en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic;3/4
dc.subjectlogical entailmenten_GB
dc.subjectstatistical inferenceen_GB
dc.subjectBayesian inferenceen_GB
dc.subjectcorroborationen_GB
dc.subjectconfirmationen_GB
dc.titleBayesian Propositional Logicen_GB
dc.typeArticleen_GB
dc.rights.holder© Copyright by Authors, Łódź 2017; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2017en_GB
dc.page.number151–168
dc.contributor.authorAffiliationDepartment of Logic, Nicolaus Copernicus University in Toruń
dc.contributor.authorAffiliationInstitute of Philosophy and Sociology, Polish Academy of Sciences
dc.identifier.eissn2449-836X
dc.referencesR. Carnap, Logical Foundation of Probability, Routledge and Kegan Paul, London (1951).en_GB
dc.referencesC. Howson, P. Urbach Scientific reasoning: the Bayesian approach, La Salle, Illinois (1990).en_GB
dc.referencesA. N. Kolmogorov, Foundations of the theory of probability second english edition, Chelsea Publishing Company, New York (1956).en_GB
dc.referencesS. Kraus, D. Lehmann and M. Magidor, Nonmonotonic Reasoning, Preferential Models and Cumulative Logics, Artificial Intelligence 44 (1990), pp. 167–207.en_GB
dc.referencesT. Kuipers, Studies in Inductive Probability and Rational Expectation, Reidel, Dordrecht (1978).en_GB
dc.referencesT. Kuipers, From Instrumentalism to Constructive Realism, Synthese Library 287, Kluwer Academic Press, Dordrecht (2000).en_GB
dc.referencesD. Makinson, Bridges from Classical to Nonmonotonic Logic, Texts in Computing, Kings College, London (2005).en_GB
dc.referencesJ. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufman, San Mateo, CA (1978).en_GB
dc.referencesJ. Pearl, On Two Pseudo-Paradoxes in Bayesian Analysis, Annals of Mathematics and Artificial Intelligence 32(2001), pp. 171–177.en_GB
dc.referencesK. Popper, The Logic of Scientific Discovery, revised edition, Hutchinson, London (1968).en_GB
dc.contributor.authorEmailjarmuzek@umk.pl
dc.contributor.authorEmailmatklon@doktorant.umk.pl
dc.contributor.authorEmailjacek.malinowski@studialogica.org
dc.identifier.doi10.18778/0138-0680.46.3.4.01
dc.relation.volume46en_GB


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record