dc.contributor.author | Jarmużek, Tomasz | |
dc.contributor.author | Klonowski, Mateusz | |
dc.contributor.author | Malinowski, Jacek | |
dc.date.accessioned | 2018-06-22T13:54:32Z | |
dc.date.available | 2018-06-22T13:54:32Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/25175 | |
dc.description.abstract | We define and investigate from a logical point of view a family of consequence relations defined in probabilistic terms. We call them relations of supporting, and write: |≈w , where w is a probability function on a Boolean language. A |≈w B iff the fact that A is the case does not decrease a probability of being B the case. Finally, we examine the intersection of |≈w , for all w, and give some formal properties of it. | en_GB |
dc.description.sponsorship | National Science Centre, Poland, numbers of grants: 2015/19/B/HS1/02478, 2015/19/N/HS1/02401. | en_GB |
dc.language.iso | en | en_GB |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | en_GB |
dc.relation.ispartofseries | Bulletin of the Section of Logic;3/4 | |
dc.subject | logical entailment | en_GB |
dc.subject | statistical inference | en_GB |
dc.subject | Bayesian inference | en_GB |
dc.subject | corroboration | en_GB |
dc.subject | confirmation | en_GB |
dc.title | Bayesian Propositional Logic | en_GB |
dc.type | Article | en_GB |
dc.rights.holder | © Copyright by Authors, Łódź 2017; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2017 | en_GB |
dc.page.number | 151–168 | |
dc.contributor.authorAffiliation | Department of Logic, Nicolaus Copernicus University in Toruń | |
dc.contributor.authorAffiliation | Institute of Philosophy and Sociology, Polish Academy of Sciences | |
dc.identifier.eissn | 2449-836X | |
dc.references | R. Carnap, Logical Foundation of Probability, Routledge and Kegan Paul, London (1951). | en_GB |
dc.references | C. Howson, P. Urbach Scientific reasoning: the Bayesian approach, La Salle, Illinois (1990). | en_GB |
dc.references | A. N. Kolmogorov, Foundations of the theory of probability second english edition, Chelsea Publishing Company, New York (1956). | en_GB |
dc.references | S. Kraus, D. Lehmann and M. Magidor, Nonmonotonic Reasoning, Preferential Models and Cumulative Logics, Artificial Intelligence 44 (1990), pp. 167–207. | en_GB |
dc.references | T. Kuipers, Studies in Inductive Probability and Rational Expectation, Reidel, Dordrecht (1978). | en_GB |
dc.references | T. Kuipers, From Instrumentalism to Constructive Realism, Synthese Library 287, Kluwer Academic Press, Dordrecht (2000). | en_GB |
dc.references | D. Makinson, Bridges from Classical to Nonmonotonic Logic, Texts in Computing, Kings College, London (2005). | en_GB |
dc.references | J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufman, San Mateo, CA (1978). | en_GB |
dc.references | J. Pearl, On Two Pseudo-Paradoxes in Bayesian Analysis, Annals of Mathematics and Artificial Intelligence 32(2001), pp. 171–177. | en_GB |
dc.references | K. Popper, The Logic of Scientific Discovery, revised edition, Hutchinson, London (1968). | en_GB |
dc.contributor.authorEmail | jarmuzek@umk.pl | |
dc.contributor.authorEmail | matklon@doktorant.umk.pl | |
dc.contributor.authorEmail | jacek.malinowski@studialogica.org | |
dc.identifier.doi | 10.18778/0138-0680.46.3.4.01 | |
dc.relation.volume | 46 | en_GB |