dc.contributor.author | Nowak, Marek | |
dc.date.accessioned | 2018-06-22T13:54:33Z | |
dc.date.available | 2018-06-22T13:54:33Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/25178 | |
dc.description.abstract | In the paper, tracing the traditional Hilbert-style syntactic account of logics, a syntactic characteristic of a closure operation defined on a complete lattice follows. The approach is based on observation that the role of rule of inference for a given consequence operation may be played by an ordinary binary relation on the complete lattice on which the closure operation is defined. | en_GB |
dc.language.iso | en | en_GB |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | en_GB |
dc.relation.ispartofseries | Bulletin of the Section of Logic;3/4 | |
dc.subject | closure operation | en_GB |
dc.subject | closure system | en_GB |
dc.subject | rule of inference | en_GB |
dc.title | A Syntactic Approach to Closure Operation | en_GB |
dc.type | Article | en_GB |
dc.rights.holder | © Copyright by Authors, Łódź 2017; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2017 | en_GB |
dc.page.number | 219–232 | |
dc.contributor.authorAffiliation | Department of Logic, University of Lodz
Lindleya 3/5, 90-131 Lódź, Poland | |
dc.identifier.eissn | 2449-836X | |
dc.references | T. S. Blyth, Lattices and Ordered Algebraic Structures, Springer (2005). | en_GB |
dc.references | K. Denecke, M. Erné, S. L. Wismath (eds.), Galois Connections and Applications, Kluwer (2004). | en_GB |
dc.references | F. Domenach, B. Leclerc, Biclosed binary relations and Galois connections, Order 18 (2001), pp. 89–104. | en_GB |
dc.references | M. Erné, J. Koslowski, A. Melton, G. E. Strecker, A Primer on Galois Connections, Annals of the New York Academy of Sciences, vol. 704 (1993), pp. 103–125. | en_GB |
dc.references | D. J. Shoesmith, T. J. Smiley, Multiple-conclusion Logic, Cambridge University Press (1978). | en_GB |
dc.references | R. Wójcicki, Lectures on Propositional Calculi, Ossolineum (1984). | en_GB |
dc.references | R. Wójcicki, Theory of Logical Calculi. Basic Theory of Consequence Operations, Kluwer (1988). | en_GB |
dc.references | J. Zygmunt, An Essay in Matrix Semantics for Consequence Relations, Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław (1984). | en_GB |
dc.contributor.authorEmail | marnowak@filozof.uni.lodz.pl | |
dc.identifier.doi | 10.18778/0138-0680.46.3.4.04 | |
dc.relation.volume | 46 | en_GB |