Pokaż uproszczony rekord

dc.contributor.authorBlasio, Carolina
dc.contributor.authorMarcos, João
dc.contributor.authorWansing, Heinrich
dc.date.accessioned2018-06-22T13:54:33Z
dc.date.available2018-06-22T13:54:33Z
dc.date.issued2017
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/25179
dc.description.abstractStarting from the notions of q-entailment and p-entailment, a two-dimensional notion of entailment is developed with respect to certain generalized q-matrices referred to as B-matrices. After showing that every purely monotonic singleconclusion consequence relation is characterized by a class of B-matrices with respect to q-entailment as well as with respect to p-entailment, it is observed that, as a result, every such consequence relation has an inferentially four-valued characterization. Next, the canonical form of B-entailment, a two-dimensional multiple-conclusion notion of entailment based on B-matrices, is introduced, providing a uniform framework for studying several different notions of entailment based on designation, antidesignation, and their complements. Moreover, the two-dimensional concept of a B-consequence relation is defined, and an abstract characterization of such relations by classes of B-matrices is obtained. Finally, a contribution to the study of inferential many-valuedness is made by generalizing Suszko’s Thesis and the corresponding reduction to show that any B-consequence relation is, in general, inferentially four-valued.en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic;3/4
dc.subjectInferential many-valuednessen_GB
dc.subjecttwo-dimensional entailmenten_GB
dc.subjectB-matricesen_GB
dc.subjectB-consequence relationsen_GB
dc.subjectmonotonic consequence relationsen_GB
dc.subjectq-entailmenten_GB
dc.subjectp-entailmenten_GB
dc.subjectSuszko Reductionen_GB
dc.titleAn Inferentially Many-Valued Two-Dimensional Notion of Entailmenten_GB
dc.typeArticleen_GB
dc.rights.holder© Copyright by Authors, Łódź 2017; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2017en_GB
dc.page.number233–262
dc.contributor.authorAffiliationIFCH / UNICAMP, 13083-896 Campinas – SP, Brazil
dc.contributor.authorAffiliationDIMAp / UFRN, 59078-970 Natal – RN, Brazil
dc.contributor.authorAffiliationRuhr University Bochum / Department of Philosophy II, Universitätsstraße 150, D-44780 Bochum, Germany
dc.identifier.eissn2449-836X
dc.referencesC. Blasio, Revisitando a lógica de Dunn-Belnap, Manuscrito 40 (2017), pp. 99–126.en_GB
dc.referencesA. Bochman, Biconsequence relations: A general formalism of reasoning with inconsistency and incompleteness, Notre Dame Journal of Formal Logic 39 (1998), pp. 47–73.en_GB
dc.referencesC. Caleiro, W. Carnielli, M. Coniglio and J. Marcos, Suszko’s Thesis and dyadic semantics, Research Report. 1049-001 Lisbon, PT: CLC, Department of Mathematics, Instituto Superior Técnico, 2003. http://sqig.math.ist.utl.pt/pub/CaleiroC/03-CCCM-dyadic1.pdf.en_GB
dc.referencesC. Caleiro, W. Carnielli, M. Coniglio and J. Marcos, Two’s company: “The humbug of many logical values”, [in:] J.-Y. Béziau (ed.), Logica Universalis, Birkhäuser, Basel, 2005, pp. 169–189.en_GB
dc.referencesC. Caleiro, J. Marcos and M. Volpe, Bivalent semantics, generalized compositionality and analytic classic-like tableaux for finite-valued logics, Theoretical Computer Science 603 (2015), pp. 84–110.en_GB
dc.referencesJ. M. Dunn and G. M. Hardegree, Algebraic Methods in Philosophical Logic, Oxford Logic Guides, Vol. 41, Oxford Science Publications, Oxford, 2001.en_GB
dc.referencesS. Frankowski, Formalization of a plausible inference, Bulletin of the Section of Logic 33 (2004), pp. 41–52.en_GB
dc.referencesS. Frankowski, p-consequence versus q-consequence operations, Bulletin of the Section of Logic 33 (2004), pp. 41–52.en_GB
dc.referencesS. Frankowski, Plausible reasoning expressed by p-consequence, Bulletin of the Section of Logic 37 (2008), pp. 161–170.en_GB
dc.referencesR. French and D. Ripley, Valuations: bi, tri and tetra, Under submission (2017).en_GB
dc.referencesL. Humberstone, Heterogeneous logic, Erkenntnis 29 (1988), pp. 395–435.en_GB
dc.referencesT. Langholm, How different is partial logic?, [in:] P. Doherty (ed.), Partiality, Modality, and Nonmonotonicity, CSLI, Stanford, 1996, pp. 3–43.en_GB
dc.referencesG. Malinowski, q-consequence operation, Reports on Mathematical Logic 24 (1990), pp. 49–59.en_GB
dc.referencesG. Malinowski, Towards the concept of logical many-valuedness, Folia Philosophica 7 (1990), pp. 97–103.en_GB
dc.referencesG. Malinowski, Many-Valued Logics, Oxford Logic Guides, Vol. 25, Clarendon Press, Oxford, 1993.en_GB
dc.referencesG. Malinowski, Inferential many-valuedness, [in:] Jan Woleński (ed.), Philosophical Logic in Poland, Kluwer Academic Publishers, Dordrecht, 1994, pp. 75–84.en_GB
dc.referencesG. Malinowski, Inferential paraconsistency, Logic and Logical Philosophy 8 (2001), pp. 83–89.en_GB
dc.referencesG. Malinowski, Inferential intensionality, Studia Logica 76 (2004), pp. 3–16.en_GB
dc.referencesG. Malinowski, That p + q = c(onsequence), Bulletin of the Section of Logic 36 (2007), pp. 7–19.en_GB
dc.referencesG. Malinowski, Beyond three inferential values, Studia Logica 92 (2009), pp. 203–213.en_GB
dc.referencesG. Malinowski, Multiplying logical values, Logical Investigations 18 (2012), Moscow–St. Petersburg, pp. 292–308.en_GB
dc.referencesJ. Marcos, What is a non-truth-functional logic, Studia Logica 92 (2009), pp. 215–240.en_GB
dc.referencesD. J. Shoesmith and T. J. Smiley,Multiple-Conclusion Logic, Cambridge University Press, 1978.en_GB
dc.referencesY. Shramko and H. Wansing, Truth and Falsehood. An Inquiry into Generalized Logical Values, Trends in Logic, Vol. 36, Springer, Berlin, 2011.en_GB
dc.referencesR. Suszko, The Fregean axiom and Polish mathematical logic in the 1920’s, Studia Logica 36 (1977), pp. 373–380.en_GB
dc.referencesA. Urquhart, Basic many-valued logic, [in:] D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. 2 (2nd edition), Kluwer, Dordrecht, 2001, pp. 249–295.en_GB
dc.referencesH. Wansing and Y. Shramko, Suszko’s Thesis, inferential many-valuedness, and the notion of a logical system, Studia Logica 88 (2008), pp. 405–429, 89 (2008), p. 147.en_GB
dc.referencesR. Wójcicki, Some remarks on the consequence operation in sentential logics, Fundamenta Mathematicae 68 (1970), pp. 269–279.en_GB
dc.referencesR. Wójcicki, Theory of Logical Calculi. Basic Theory of Consequence Operations, Kluwer, Dordrecht, 1988.en_GB
dc.contributor.authorEmailcarolblasio@gmail.com
dc.contributor.authorEmailjmarcos@dimap.ufrn.br
dc.contributor.authorEmailHeinrich.Wansing@rub.de
dc.identifier.doi10.18778/0138-0680.46.3.4.05
dc.relation.volume46en_GB


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord