dc.contributor.author | Blasio, Carolina | |
dc.contributor.author | Marcos, João | |
dc.contributor.author | Wansing, Heinrich | |
dc.date.accessioned | 2018-06-22T13:54:33Z | |
dc.date.available | 2018-06-22T13:54:33Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/25179 | |
dc.description.abstract | Starting from the notions of q-entailment and p-entailment, a two-dimensional notion of entailment is developed with respect to certain generalized q-matrices referred to as B-matrices. After showing that every purely monotonic singleconclusion consequence relation is characterized by a class of B-matrices with respect to q-entailment as well as with respect to p-entailment, it is observed that, as a result, every such consequence relation has an inferentially four-valued characterization. Next, the canonical form of B-entailment, a two-dimensional multiple-conclusion notion of entailment based on B-matrices, is introduced, providing a uniform framework for studying several different notions of entailment based on designation, antidesignation, and their complements. Moreover, the two-dimensional concept of a B-consequence relation is defined, and an abstract characterization of such relations by classes of B-matrices is obtained. Finally, a contribution to the study of inferential many-valuedness is made by generalizing Suszko’s Thesis and the corresponding reduction to show that any B-consequence relation is, in general, inferentially four-valued. | en_GB |
dc.language.iso | en | en_GB |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | en_GB |
dc.relation.ispartofseries | Bulletin of the Section of Logic;3/4 | |
dc.subject | Inferential many-valuedness | en_GB |
dc.subject | two-dimensional entailment | en_GB |
dc.subject | B-matrices | en_GB |
dc.subject | B-consequence relations | en_GB |
dc.subject | monotonic consequence relations | en_GB |
dc.subject | q-entailment | en_GB |
dc.subject | p-entailment | en_GB |
dc.subject | Suszko Reduction | en_GB |
dc.title | An Inferentially Many-Valued Two-Dimensional Notion of Entailment | en_GB |
dc.type | Article | en_GB |
dc.rights.holder | © Copyright by Authors, Łódź 2017; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2017 | en_GB |
dc.page.number | 233–262 | |
dc.contributor.authorAffiliation | IFCH / UNICAMP, 13083-896 Campinas – SP, Brazil | |
dc.contributor.authorAffiliation | DIMAp / UFRN, 59078-970 Natal – RN, Brazil | |
dc.contributor.authorAffiliation | Ruhr University Bochum / Department of Philosophy II, Universitätsstraße 150, D-44780 Bochum, Germany | |
dc.identifier.eissn | 2449-836X | |
dc.references | C. Blasio, Revisitando a lógica de Dunn-Belnap, Manuscrito 40 (2017), pp. 99–126. | en_GB |
dc.references | A. Bochman, Biconsequence relations: A general formalism of reasoning with inconsistency and incompleteness, Notre Dame Journal of Formal Logic 39 (1998), pp. 47–73. | en_GB |
dc.references | C. Caleiro, W. Carnielli, M. Coniglio and J. Marcos, Suszko’s Thesis and dyadic semantics, Research Report. 1049-001 Lisbon, PT: CLC, Department of Mathematics, Instituto Superior Técnico, 2003. http://sqig.math.ist.utl.pt/pub/CaleiroC/03-CCCM-dyadic1.pdf. | en_GB |
dc.references | C. Caleiro, W. Carnielli, M. Coniglio and J. Marcos, Two’s company: “The humbug of many logical values”, [in:] J.-Y. Béziau (ed.), Logica Universalis, Birkhäuser, Basel, 2005, pp. 169–189. | en_GB |
dc.references | C. Caleiro, J. Marcos and M. Volpe, Bivalent semantics, generalized compositionality and analytic classic-like tableaux for finite-valued logics, Theoretical Computer Science 603 (2015), pp. 84–110. | en_GB |
dc.references | J. M. Dunn and G. M. Hardegree, Algebraic Methods in Philosophical Logic, Oxford Logic Guides, Vol. 41, Oxford Science Publications, Oxford, 2001. | en_GB |
dc.references | S. Frankowski, Formalization of a plausible inference, Bulletin of the Section of Logic 33 (2004), pp. 41–52. | en_GB |
dc.references | S. Frankowski, p-consequence versus q-consequence operations, Bulletin of the Section of Logic 33 (2004), pp. 41–52. | en_GB |
dc.references | S. Frankowski, Plausible reasoning expressed by p-consequence, Bulletin of the Section of Logic 37 (2008), pp. 161–170. | en_GB |
dc.references | R. French and D. Ripley, Valuations: bi, tri and tetra, Under submission (2017). | en_GB |
dc.references | L. Humberstone, Heterogeneous logic, Erkenntnis 29 (1988), pp. 395–435. | en_GB |
dc.references | T. Langholm, How different is partial logic?, [in:] P. Doherty (ed.), Partiality, Modality, and Nonmonotonicity, CSLI, Stanford, 1996, pp. 3–43. | en_GB |
dc.references | G. Malinowski, q-consequence operation, Reports on Mathematical Logic 24 (1990), pp. 49–59. | en_GB |
dc.references | G. Malinowski, Towards the concept of logical many-valuedness, Folia Philosophica 7 (1990), pp. 97–103. | en_GB |
dc.references | G. Malinowski, Many-Valued Logics, Oxford Logic Guides, Vol. 25, Clarendon Press, Oxford, 1993. | en_GB |
dc.references | G. Malinowski, Inferential many-valuedness, [in:] Jan Woleński (ed.), Philosophical Logic in Poland, Kluwer Academic Publishers, Dordrecht, 1994, pp. 75–84. | en_GB |
dc.references | G. Malinowski, Inferential paraconsistency, Logic and Logical Philosophy 8 (2001), pp. 83–89. | en_GB |
dc.references | G. Malinowski, Inferential intensionality, Studia Logica 76 (2004), pp. 3–16. | en_GB |
dc.references | G. Malinowski, That p + q = c(onsequence), Bulletin of the Section of Logic 36 (2007), pp. 7–19. | en_GB |
dc.references | G. Malinowski, Beyond three inferential values, Studia Logica 92 (2009), pp. 203–213. | en_GB |
dc.references | G. Malinowski, Multiplying logical values, Logical Investigations 18 (2012), Moscow–St. Petersburg, pp. 292–308. | en_GB |
dc.references | J. Marcos, What is a non-truth-functional logic, Studia Logica 92 (2009), pp. 215–240. | en_GB |
dc.references | D. J. Shoesmith and T. J. Smiley,Multiple-Conclusion Logic, Cambridge University Press, 1978. | en_GB |
dc.references | Y. Shramko and H. Wansing, Truth and Falsehood. An Inquiry into Generalized Logical Values, Trends in Logic, Vol. 36, Springer, Berlin, 2011. | en_GB |
dc.references | R. Suszko, The Fregean axiom and Polish mathematical logic in the 1920’s, Studia Logica 36 (1977), pp. 373–380. | en_GB |
dc.references | A. Urquhart, Basic many-valued logic, [in:] D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. 2 (2nd edition), Kluwer, Dordrecht, 2001, pp. 249–295. | en_GB |
dc.references | H. Wansing and Y. Shramko, Suszko’s Thesis, inferential many-valuedness, and the notion of a logical system, Studia Logica 88 (2008), pp. 405–429, 89 (2008), p. 147. | en_GB |
dc.references | R. Wójcicki, Some remarks on the consequence operation in sentential logics, Fundamenta Mathematicae 68 (1970), pp. 269–279. | en_GB |
dc.references | R. Wójcicki, Theory of Logical Calculi. Basic Theory of Consequence Operations, Kluwer, Dordrecht, 1988. | en_GB |
dc.contributor.authorEmail | carolblasio@gmail.com | |
dc.contributor.authorEmail | jmarcos@dimap.ufrn.br | |
dc.contributor.authorEmail | Heinrich.Wansing@rub.de | |
dc.identifier.doi | 10.18778/0138-0680.46.3.4.05 | |
dc.relation.volume | 46 | en_GB |