A Useful Four-Valued Extension of the Temporal Logic KtT4
Streszczenie
The temporal logic KtT4 is the modal logic obtained from the minimal temporal
logic Kt by requiring the accessibility relation to be reflexive (which corresponds to
the axiom T) and transitive (which corresponds to the axiom 4). This article aims,
firstly, at providing both a model-theoretic and a proof-theoretic characterisation
of a four-valued extension of the temporal logic KtT4 and, secondly, at identifying
some of the most useful properties of this extension in the context of partial and
paraconsistent logics.
Collections
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Powiązane pozycje
Wyświetlanie pozycji powiązanych tytułem, autorstwem i tematem.
-
A Logic for Dually Hemimorphic Semi-Heyting Algebras and its Axiomatic Extensions
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P. (Wydawnictwo Uniwersytetu Łódzkiego, 2022-12-14)The variety \(\mathbb{DHMSH}\) of dually hemimorphic semi-Heyting algebras was introduced in 2011 by the second author as an expansion of semi-Heyting algebras by a dual hemimorphism. In this paper, we focus on the variety ... -
Modal Boolean Connexive Logics: Semantics and Tableau Approach
Jarmużek, Tomasz; Malinowski, Jacek (Wydawnictwo Uniwersytetu Łódzkiego, 2019-10-30)In this paper we investigate Boolean connexive logics in a language with modal operators: □, ◊. In such logics, negation, conjunction, and disjunction behave in a classical, Boolean way. Only implication is non-classical. ... -
A Semi-lattice of Four-valued Literal-paraconsistent-paracomplete Logics
Tomova, Natalya (Wydawnictwo Uniwersytetu Łódzkiego, 2020-11-13)In this paper, we consider the class of four-valued literal-paraconsistent-paracomplete logics constructed by combination of isomorphs of classical logic CPC. These logics form a 10-element upper semi-lattice with respect ...