Pokaż uproszczony rekord

dc.contributor.authorVoutsadakis, George
dc.date.accessioned2019-01-14T14:54:39Z
dc.date.available2019-01-14T14:54:39Z
dc.date.issued2018
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/26413
dc.description.abstractThis work adapts techniques and results first developed by Malinowski and by Marek in the context of referential semantics of sentential logics to the context of logics formalized as π-institutions. More precisely, the notion of a pseudoreferential matrix system is introduced and it is shown how this construct generalizes that of a referential matrix system. It is then shown that every π–institution has a pseudo-referential matrix system semantics. This contrasts with referential matrix system semantics which is only available for self-extensional π-institutions by a previous result of the author obtained as an extension of a classical result of Wójcicki. Finally, it is shown that it is possible to replace an arbitrary pseudoreferential matrix system semantics by a discrete pseudo-referential matrix system semantics.en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic;2
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.en_GB
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0en_GB
dc.subjectReferential Logicsen_GB
dc.subjectSelfextensional Logicsen_GB
dc.subjectReferential Semanticsen_GB
dc.subjectReferential π-institutionsen_GB
dc.subjectSelfextensional π-institutionsen_GB
dc.subjectPseudo- Referential Semanticsen_GB
dc.subjectDiscrete Referential Semanticsen_GB
dc.titleCategorical Abstract Algebraic Logic: Pseudo-Referential Matrix System Semanticsen_GB
dc.typeArticleen_GB
dc.page.number[69]-88
dc.contributor.authorAffiliationSchool of Mathematics and Computer Science, Lake Superior State University, Sault Sainte Marie, MI 49783, USA
dc.identifier.eissn2449-836X
dc.referencesW. J. Blok D. and Pigozzi, Algebraizable Logics, Memoirs of the American Mathematical Society, Vol. 77, No. 396 (1989).en_GB
dc.referencesJ. Czelakowski, Reduced Products of Logical Matrices, Studia Logica, Vol. 39 (1980), pp. 19–43.en_GB
dc.referencesJ. Czelakowski, The Suszko Operator Part I, Studia Logica, Vol. 74, No. 1–2 (2003), pp. 181–231.en_GB
dc.referencesJ. Fiadeiro and A. Sernadas, Structuring Theories on Consequence, [in:] D. Sannella and A. Tarlecki, eds., Recent Trends in Data Type Specification, Lecture Notes in Computer Science, Vol. 332, Springer-Verlag, New York, 1988, pp. 44–72.en_GB
dc.referencesJ. M. Font and R. Jansana, A General Algebraic Semantics for Sentential Logics, Lecture Notes in Logic, Vol. 332, No. 7 (1996), Springer-Verlag, Berlin Heidelberg, 1996.en_GB
dc.referencesJ. A. Goguen and R. M. Burstall, Institutions: Abstract Model Theory for Specification and Programming, Journal of the Association for Computing Machinery, Vol. 39, No. 1 (1992), pp. 95–146.en_GB
dc.referencesR. Jansana and A. Palmigiano, Referential Semantics: Duality and Applications, Reports on Mathematical Logic, Vol. 41 (2006), pp. 63–93.en_GB
dc.referencesG. Malinowski, Pseudo-Referential Matrix Semantics for Propositional Logics, Bulletin of the Section of Logic, Vol. 12, No. 3 (1983), pp. 90–98.en_GB
dc.referencesI. Marek, Remarks on Pseudo-Referential Matrices, Bulletin of the Section of Logic, Vol. 16, No. 2 (1987), pp. 89–92.en_GB
dc.referencesR. Wójcicki, Referential Matrix Semantics for Propositional Calculi, Bulletin of the Section of Logic, Vol. 8, No. 4 (1979), pp. 170–176.en_GB
dc.referencesG. Voutsadakis, Categorical Abstract Algebraic Logic: Referential Algebraic Semantics, Studia Logica, Vol. 101, No. 4 (2013), pp. 849–899.en_GB
dc.referencesG. Voutsadakis, Categorical Abstract Algebraic Logic: Referential π-Institutions, Bulletin of the Section of Logic, Vol. 44, No. 1/2 (2015), pp. 33–51.en_GB
dc.referencesG. Voutsadakis, Categorical Abstract Algebraic Logic: Tarski Congruence Systems, Logical Morphisms and Logical Quotients, Journal of Pure and Applied Mathematics: Advances and Applications, Vol. 13, No. 1 (2015), pp. 27–73.en_GB
dc.contributor.authorEmailgvoutsad@lssu.edu
dc.identifier.doi10.18778/0138-0680.47.2.01
dc.relation.volume47en_GB
dc.subject.jel03G27


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.