dc.contributor.author | Voutsadakis, George | |
dc.date.accessioned | 2019-01-14T14:54:39Z | |
dc.date.available | 2019-01-14T14:54:39Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/26413 | |
dc.description.abstract | This work adapts techniques and results first developed by Malinowski and by Marek in the context of referential semantics of sentential logics to the context of logics formalized as π-institutions. More precisely, the notion of a pseudoreferential matrix system is introduced and it is shown how this construct generalizes that of a referential matrix system. It is then shown that every π–institution has a pseudo-referential matrix system semantics. This contrasts with referential matrix system semantics which is only available for self-extensional π-institutions by a previous result of the author obtained as an extension of a classical result of Wójcicki. Finally, it is shown that it is possible to replace an arbitrary pseudoreferential matrix system semantics by a discrete pseudo-referential matrix system semantics. | en_GB |
dc.language.iso | en | en_GB |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | en_GB |
dc.relation.ispartofseries | Bulletin of the Section of Logic;2 | |
dc.rights | This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. | en_GB |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0 | en_GB |
dc.subject | Referential Logics | en_GB |
dc.subject | Selfextensional Logics | en_GB |
dc.subject | Referential Semantics | en_GB |
dc.subject | Referential π-institutions | en_GB |
dc.subject | Selfextensional π-institutions | en_GB |
dc.subject | Pseudo- Referential Semantics | en_GB |
dc.subject | Discrete Referential Semantics | en_GB |
dc.title | Categorical Abstract Algebraic Logic: Pseudo-Referential Matrix System Semantics | en_GB |
dc.type | Article | en_GB |
dc.page.number | [69]-88 | |
dc.contributor.authorAffiliation | School of Mathematics and Computer Science, Lake Superior State University, Sault Sainte Marie, MI 49783, USA | |
dc.identifier.eissn | 2449-836X | |
dc.references | W. J. Blok D. and Pigozzi, Algebraizable Logics, Memoirs of the American Mathematical Society, Vol. 77, No. 396 (1989). | en_GB |
dc.references | J. Czelakowski, Reduced Products of Logical Matrices, Studia Logica, Vol. 39 (1980), pp. 19–43. | en_GB |
dc.references | J. Czelakowski, The Suszko Operator Part I, Studia Logica, Vol. 74, No. 1–2 (2003), pp. 181–231. | en_GB |
dc.references | J. Fiadeiro and A. Sernadas, Structuring Theories on Consequence, [in:] D. Sannella and A. Tarlecki, eds., Recent Trends in Data Type Specification, Lecture Notes in Computer Science, Vol. 332, Springer-Verlag, New York, 1988, pp. 44–72. | en_GB |
dc.references | J. M. Font and R. Jansana, A General Algebraic Semantics for Sentential Logics, Lecture Notes in Logic, Vol. 332, No. 7 (1996), Springer-Verlag, Berlin Heidelberg, 1996. | en_GB |
dc.references | J. A. Goguen and R. M. Burstall, Institutions: Abstract Model Theory for Specification and Programming, Journal of the Association for Computing Machinery, Vol. 39, No. 1 (1992), pp. 95–146. | en_GB |
dc.references | R. Jansana and A. Palmigiano, Referential Semantics: Duality and Applications, Reports on Mathematical Logic, Vol. 41 (2006), pp. 63–93. | en_GB |
dc.references | G. Malinowski, Pseudo-Referential Matrix Semantics for Propositional Logics, Bulletin of the Section of Logic, Vol. 12, No. 3 (1983), pp. 90–98. | en_GB |
dc.references | I. Marek, Remarks on Pseudo-Referential Matrices, Bulletin of the Section of Logic, Vol. 16, No. 2 (1987), pp. 89–92. | en_GB |
dc.references | R. Wójcicki, Referential Matrix Semantics for Propositional Calculi, Bulletin of the Section of Logic, Vol. 8, No. 4 (1979), pp. 170–176. | en_GB |
dc.references | G. Voutsadakis, Categorical Abstract Algebraic Logic: Referential Algebraic Semantics, Studia Logica, Vol. 101, No. 4 (2013), pp. 849–899. | en_GB |
dc.references | G. Voutsadakis, Categorical Abstract Algebraic Logic: Referential π-Institutions, Bulletin of the Section of Logic, Vol. 44, No. 1/2 (2015), pp. 33–51. | en_GB |
dc.references | G. Voutsadakis, Categorical Abstract Algebraic Logic: Tarski Congruence Systems, Logical Morphisms and Logical Quotients, Journal of Pure and Applied Mathematics: Advances and Applications, Vol. 13, No. 1 (2015), pp. 27–73. | en_GB |
dc.contributor.authorEmail | gvoutsad@lssu.edu | |
dc.identifier.doi | 10.18778/0138-0680.47.2.01 | |
dc.relation.volume | 47 | en_GB |
dc.subject.jel | 03G27 | |