Show simple item record

dc.contributor.authorBadia, Guillermo
dc.date.accessioned2019-01-14T14:54:39Z
dc.date.available2019-01-14T14:54:39Z
dc.date.issued2018
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/26415
dc.description.abstractWe characterize the non-trivial substructural logics having the variable sharing property as well as its strong version. To this end, we find the algebraic counterparts over varieties of these logical properties.en_GB
dc.description.sponsorshipThe work was supported by the Austrian Science Fund (FWF): project I 1923-N25 (New perspectives on residuated posets).en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic;2
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.en_GB
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0en_GB
dc.subjectrelevant logicen_GB
dc.subjectalgebraic characterizations of logical propertiesen_GB
dc.subjectvariable sharing propertyen_GB
dc.subjectsubstructural logicsen_GB
dc.titleVariable Sharing in Substructural Logics: an Algebraic Characterizationen_GB
dc.typeArticleen_GB
dc.page.number[107]-115
dc.contributor.authorAffiliationDepartment of Knowledge-Based Mathematical Systems, Johannes Kepler Universität, Austria
dc.identifier.eissn2449-836X
dc.referencesA. R. Anderson and N. D. Belnap, Entailment. The Logic of Relevance and Necessity, I, Princeton University Press, 1975.en_GB
dc.referencesA. Avron, The basic relevance criterion, talk given at the Third Workshop in Edmonton, Canada, May 2016.en_GB
dc.referencesM. Dunn and G. Restall, Relevance Logic [in:] D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Kluwer, 2002, pp. 1–128.en_GB
dc.referencesN. Galatos, P. Jipsen, T. Kowalski and H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Elsevier, 2007.en_GB
dc.referencesH. Kihara and H. Ono, Algebraic characterizations of variable separation properties, Reports on Mathematical Logic 43 (2008), pp. 43–63.en_GB
dc.referencesL. L. Maksimova, Craig’s theorem in superintuitionistic logics and amalgamable varieties of pseudo-Boolean algebras, Algebra i Logika 16 (1977), pp. 643–681.en_GB
dc.referencesL. L. Maksimova, On variable separation in modal and superintuitionistic logics, Studia Logica 55 (1995), pp. 99–112.en_GB
dc.referencesL. L. Maksimova, Interrelation of algebraic, semantical and logical properties for superintuitionistic and modal logics, Logic, Algebra and Computer Science, Banach Center Publications, Vol. 46, Polish Academy of Science, Warszawa (1999), pp. 159–168.en_GB
dc.referencesJ. M. Méndez and G. Robles, A General Characterization of the Variable-Sharing Property by Means of Logical Matrices, Notre Dame Journal of Formal Logic, Vol. 53(2) (2012), pp. 223–244.en_GB
dc.referencesD. Souma, An algebraic approach to the disjunction property of substructural logics, Notre Dame Journal of Formal Logic, Vol. 48(4) (2007), pp. 489–495.en_GB
dc.referencesA. Wroński, Remarks on Halldén-completeness of modal and intermediate logics, Bulletin of the Section of Logic, Vol. 5/4 (1976), pp. 126–129.en_GB
dc.referencesE. Yang, R and Relevance Principle Revisited, Journal of Philosophical Logic 42(5) (2013), pp. 767–782.en_GB
dc.contributor.authorEmailguillermo.badia_hernandez@jku.at
dc.identifier.doi10.18778/0138-0680.47.2.03
dc.relation.volume47en_GB


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Except where otherwise noted, this item's license is described as This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.