dc.contributor.author | Klonowski, Mateusz | |
dc.date.accessioned | 2019-04-26T14:21:44Z | |
dc.date.available | 2019-04-26T14:21:44Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/28053 | |
dc.description.abstract | One of the logic defined by Richard Epstein in a context of an analysis of subject matter relationship is Symmetric Relatedness Logic S. In the monograph [2] we can find some open problems concerning relatedness logic, a Post-style completeness theorem for logic S is one of them. Our paper introduces a solution of this metalogical issue. | en_GB |
dc.description.sponsorship | research supported by National Science Centre of Poland through grant No.: UMO-2015/19/N/HS1/02401 | en_GB |
dc.language.iso | en | en_GB |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | en_GB |
dc.relation.ispartofseries | Bulletin of the Section of Logic; 3 | |
dc.rights | This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. | en_GB |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0 | en_GB |
dc.subject | normal forms | en_GB |
dc.subject | Post-style proof of completeness | en_GB |
dc.subject | Relatedness logic | en_GB |
dc.subject | Relating logic | en_GB |
dc.title | A post-style proof of completeness theorem for symmetric relatedness Logic S | en_GB |
dc.type | Article | en_GB |
dc.page.number | 201-214 | |
dc.contributor.authorAffiliation | Nicolaus Copernicus University, Department of Logic | |
dc.identifier.eissn | 2449-836X | |
dc.references | [1] R. L. Epstein, Relatedness and Implication, Philosophical Studies, Vol. 36:2 (1979), pp. 137–173. | en_GB |
dc.references | [2] R. L. Epstein, (with the assistance and collaboration of: W. A. Camielli, I. M. L. D’Ottaviano, S. Krajewski, R. D. Maddux), The Semantic Foundtations of Logic. Volume 1: Propositional Logics, Springer Science+Business Media, Dordrecht (1990). | en_GB |
dc.references | [3] T. Jarmużek and B. Kaczkowski, On some Logic with a Relation Imposed on Formulae: Tableau System F, Bulletin of the Section of Logic, Vol. 43:1/2 (2014), pp. 53–72. | en_GB |
dc.references | [4] S. Krajewski, One or Many Logics? (Epstein’s Set-Assignement Semantics for Logical Calculi), The Journal of Non-Classical Logic 8:1 (1991), pp. 7–33. | en_GB |
dc.references | [5] S. Krajewski, On Relatedness Logic of Richard L. Epstein, Bulletin of the Section of Logic, Vol. 11:1/2 (1982), pp. 24–30. | en_GB |
dc.references | [6] J. B. Rosser, Logic for Mathematicians, McGraw-Hill, New York (1953). | en_GB |
dc.references | [7] D. Walton, Philosophical Basis of Relatedness Logic, Philosophical Studies, Vol. 36:2 (1979), pp. 115–136. | en_GB |
dc.contributor.authorEmail | matklon@doktorant.umk.pl | |
dc.identifier.doi | 10.18778/0138-0680.47.3.05 | |
dc.relation.volume | 47 | en_GB |