Pokaż uproszczony rekord

dc.contributor.authorKlonowski, Mateusz
dc.date.accessioned2019-04-26T14:21:44Z
dc.date.available2019-04-26T14:21:44Z
dc.date.issued2018
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/28053
dc.description.abstractOne of the logic defined by Richard Epstein in a context of an analysis of subject matter relationship is Symmetric Relatedness Logic S. In the monograph [2] we can find some open problems concerning relatedness logic, a Post-style completeness theorem for logic S is one of them. Our paper introduces a solution of this metalogical issue.en_GB
dc.description.sponsorshipresearch supported by National Science Centre of Poland through grant No.: UMO-2015/19/N/HS1/02401en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic; 3
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.en_GB
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0en_GB
dc.subjectnormal formsen_GB
dc.subjectPost-style proof of completenessen_GB
dc.subjectRelatedness logicen_GB
dc.subjectRelating logicen_GB
dc.titleA post-style proof of completeness theorem for symmetric relatedness Logic Sen_GB
dc.typeArticleen_GB
dc.page.number201-214
dc.contributor.authorAffiliationNicolaus Copernicus University, Department of Logic
dc.identifier.eissn2449-836X
dc.references[1] R. L. Epstein, Relatedness and Implication, Philosophical Studies, Vol. 36:2 (1979), pp. 137–173.en_GB
dc.references[2] R. L. Epstein, (with the assistance and collaboration of: W. A. Camielli, I. M. L. D’Ottaviano, S. Krajewski, R. D. Maddux), The Semantic Foundtations of Logic. Volume 1: Propositional Logics, Springer Science+Business Media, Dordrecht (1990).en_GB
dc.references[3] T. Jarmużek and B. Kaczkowski, On some Logic with a Relation Imposed on Formulae: Tableau System F, Bulletin of the Section of Logic, Vol. 43:1/2 (2014), pp. 53–72.en_GB
dc.references[4] S. Krajewski, One or Many Logics? (Epstein’s Set-Assignement Semantics for Logical Calculi), The Journal of Non-Classical Logic 8:1 (1991), pp. 7–33.en_GB
dc.references[5] S. Krajewski, On Relatedness Logic of Richard L. Epstein, Bulletin of the Section of Logic, Vol. 11:1/2 (1982), pp. 24–30.en_GB
dc.references[6] J. B. Rosser, Logic for Mathematicians, McGraw-Hill, New York (1953).en_GB
dc.references[7] D. Walton, Philosophical Basis of Relatedness Logic, Philosophical Studies, Vol. 36:2 (1979), pp. 115–136.en_GB
dc.contributor.authorEmailmatklon@doktorant.umk.pl
dc.identifier.doi10.18778/0138-0680.47.3.05
dc.relation.volume47en_GB


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.