Pokaż uproszczony rekord

dc.contributor.authorKawano, Tomoaki
dc.date.accessioned2019-05-24T07:15:56Z
dc.date.available2019-05-24T07:15:56Z
dc.date.issued2018
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/28480
dc.description.abstractOrthologic (OL) is non-classical logic and has been studied as a part of quantumlogic. OL is based on an ortholattice and is also called minimal quantum logic.Sequent calculus is used as a tool for proof in logic and has been examinedfor several decades. Although there are many studies on sequent calculus forOL, these sequent calculi have some problems. In particular, they do not includeimplication connective and they are mostly incompatible with the cut-eliminationtheorem. In this paper, we introduce new labeled sequent calculus called LGOI,and show that this sequent calculus solve the above problems. It is alreadyknown that OL is decidable. We prove that decidability is preserved when theimplication connective is added to OL.en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic; 4
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.en_GB
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0en_GB
dc.subjectQuantum logicen_GB
dc.subjectSequent calculusen_GB
dc.subjectcut-elimination theoremen_GB
dc.subjectDecidabilityen_GB
dc.subjectKripke Modelen_GB
dc.titleLabeled Sequent Calculus for Orthologicen_GB
dc.typeArticleen_GB
dc.page.number217-232
dc.contributor.authorAffiliationTokyo Institute of Technology, School of Computing, Department of Mathematical and Computing Science
dc.identifier.eissn2449-836X
dc.references[1] M. L. D. Chiara and R. Giuntini, Quantum Logics, Handbook of Philosophical Logic 2nd Edition 6 (2001), pp. 129–228.en_GB
dc.references[2] C. Faggian and G. Sambin, From Basic Logic to Quantum Logics with Cut-Elimination, International Journal of Theoretical Physics 37(1) (1998), pp. 31–37.en_GB
dc.references[3] G. M. Hardegree, Material Implication in Orthomodular (and Boolean) Lattices, Notre Dame Journal of Formal Logic 22(2) (1981), pp. 163–182.en_GB
dc.references[4] Z. Hou, A. Tiu and R. Gore, A Labelled Sequent Calculus for BBI: Proof Theory and Proof Search, TABLEAUX 2013 (2013), pp. 172–187.en_GB
dc.references[5] S. Negri, Proof Analysis in Modal Logic, Journal of Philosophical Logic 34 (2005), pp. 507–544.en_GB
dc.references[6] S. Negri, Proof theory for modal logic, Philosophy Compass 6(8) (2011), pp. 523–538.en_GB
dc.references[7] H. Nishimura, Sequential Method in Quantum Logic, The Journal of Symbolic Logic 45(2) (1980), pp. 339–352.en_GB
dc.references[8] H. Nishimura, Proof Theory for Minimal Quantum Logic I, International Journal of Theoretical Physics 33(1) (1994), pp. 103–113.en_GB
dc.references[9] H. Nishimura, Proof Theory for Minimal Quantum Logic II, International Journal of Theoretical Physics 33(7) (1994), pp. 1427–1443.en_GB
dc.contributor.authorEmailkawano.t.af@m.titech.ac.jp
dc.identifier.doi10.18778/0138-0680.47.4.01
dc.relation.volume47en_GB


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.