Show simple item record

dc.contributor.authorIndrzejczak, Andrzej
dc.date.accessioned2019-05-24T07:15:58Z
dc.date.available2019-05-24T07:15:58Z
dc.date.issued2018
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/28482
dc.description.abstractIn several applications of sequent calculi going beyond pure logic, an introduction of suitably defined rules seems to be more profitable than addition of extra axiomatic sequents. A program of formalization of mathematical theories via rules of special sort was developed successfully by Negri and von Plato. In this paper a general theorem on possible ways of transforming axiomatic sequents into rules in sequent calculi is proved. We discuss its possible applications and provide some case studies for illustration.en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic; 4
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.en_GB
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0en_GB
dc.subjectsequent calculusen_GB
dc.subjectcut eliminationen_GB
dc.subjectproof theoryen_GB
dc.subjectextralogical rulesen_GB
dc.titleRule-Generation Theorem and its Applicationsen_GB
dc.typeArticleen_GB
dc.page.number265-281
dc.contributor.authorAffiliationUniversity of Łódź, Department of Logic
dc.identifier.eissn2449-836X
dc.references[1] K. Bimbo, Proof Theory, CRC Press 2015.en_GB
dc.references[2] T. Braüner, Hybrid Logic and its Proof-Theory, Roskilde 2009.en_GB
dc.references[3] S. R. Buss, An Introduction to Proof Theory [in:] S. Buss (ed.) Handbook of Proof Theory, Elsevier 1998.en_GB
dc.references[4] A. Ciabattoni, N. Galatos and K. Terui, From axioms to analytic rules in nonclassical logics , [in:] LICS (2002), pp. 229–240, IEEE Computer Society, 2008.en_GB
dc.references[5] A. Ciabattoni, G. Metcalfe and F. Montagna, Algebraic and proof-theoretic characterizations of truth stressers for MTL and its extensions, Fuzzy Sets and Systems 161(3) (2010), pp. 369–389.en_GB
dc.references[6] A. Ciabattoni and R. Ramanayake, Structural extensions of display calculi: a general recipe, WoLLIC 2013, LNCS pp. 81–95, Springer 2013.en_GB
dc.references[7] H. B. Curry, Foundations of Mathematical Logic , McGraw-Hill, New York 1963.en_GB
dc.references[8] M. Fitting, Proof Methods for Modal and Intuitionistic Logics , Reidel, Dordrecht 1983.en_GB
dc.references[9] G. Gentzen, Untersuchungen ̈uber das Logische Schliessen, Mathematische Zeitschrift 39 (1934), pp. 176–210 and pp. 405–431.en_GB
dc.references[10] G. Gentzen, Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie, Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, New Series 4, Leipzig, pp. 19–44, 1938.en_GB
dc.references[11] A. Indrzejczak, Natural Deduction, Hybrid Systems and Modal Logics, Springer 2010.en_GB
dc.references[12] A. Indrzejczak, Sequent Calculi in Classical Logic [in polish], Lodz University Publications 2013.en_GB
dc.references[13] A. Indrzejczak, Eliminability of Cut in Hypersequent Calculi for some Modal Logics of Linear Frames, Information Processing Letters 115/2 (2015), pp. 75–81.en_GB
dc.references[14] A. Indrzejczak, Simple Cut Elimination Proof for Hybrid Logic, Logic and Logical Philosophy 25/2 (2016), pp. 129–141.en_GB
dc.references[15] A. Indrzejczak, Simple Decision Procedure for S5 in Standard Cut-Free Sequent Calculus, Bulletin of the Section of Logic 45:1 (2016), pp. 95–102.en_GB
dc.references[16] A. Indrzejczak, Fregean Description Theory in Proof-Theoretical Setting, Logic and Logical Philosophy, Vol. 28, No 1 (2019), pp. 137–155.en_GB
dc.references[17] A. Indrzejczak, Cut-Free Modal Theory of Definite Descriptions, [in:] G. Bezhanishvili et al. (eds.) Advances in Modal Logic 12, pp. 387–406, College Publications 2018.en_GB
dc.references[18] M. Kracht, Power and weakness of the modal display calculus , [in:] H. Wansing (ed.) Proof Theory of Modal Logic, pp. 93–121, Kluwer 1996.en_GB
dc.references[19] H. Kurokawa, Hypersequent Calculi for Modal Logics Extending S4, [in:] New Frontiers in Artificial Intelligence, pp. 51–68, Springer 2014.en_GB
dc.references[20] B. Lellmann, Axioms vs hypersequent rules with context restrictions, [in:] Proceedings of IJCAR , pp. 307–321, Springer 2014.en_GB
dc.references[21] B. Lellmann, Hypersequent rules with restricted contexts for propositional modal logics, Theoretical Computer Science.en_GB
dc.references[22] B. Lellmann and D. Pattinson, Correspondence between modal Hilbert axioms and sequent rules with an application to S5, [in:] TABLEAUX 2013, pp. 219–233, Springer 2013.en_GB
dc.references[23] M. Manzano, Model Theory, Oxford University Press, Oxford 1999.en_GB
dc.references[24] G. Metcalfe, N. Olivetti and D. Gabbay, Proof Theory for Fuzzy Logics, Springer 2008.en_GB
dc.references[25] T. Nagashima, An extension of the Craig-Schütte interpolation theorem, Annals of the Japan Association for the Philosophy of Science 3 (1966), pp. 12–18.en_GB
dc.references[26] S. Negri and J. von Plato, Structural Proof Theory , Cambridge University Press, Cambridge 2001.en_GB
dc.references[27] S. Negri and J. von Plato, Proof Analysis, Cambridge University Press, Cambridge 2011.en_GB
dc.references[28] M. Ohnishi and K. Matsumoto, Gentzen Method in Modal Calculi I, Osaka Mathematical Journal 9 (1957), pp. 113–130.en_GB
dc.references[29] F. Paoli, Substructural Logics: A Primer, Kluwer, Dordrecht 2002.en_GB
dc.references[30] F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, Springer 2011.en_GB
dc.references[31] P. Schroeder-Heister, Open Problems in Proof-theoretic Semantics, [in:] T. Piecha, P. Schroeder-Heister (eds.) Advances in Proof-theoretic Semantics, pp. 253–283, Springer 2016.en_GB
dc.references[32] G. Takeuti, Proof Theory, North-Holland, Amsterdam 1987.en_GB
dc.references[33] A. S. Troelstra and H. Schwichtenberg, Basic Proof Theory, Oxford University Press, Oxford 1996.en_GB
dc.references[34] H. Wansing, Displaying Modal Logics, Kluwer Academic Publishers, Dordrecht 1999.en_GB
dc.references[35] H. Wansing, Sequent Systems for Modal Logics, [in:] D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol. IV, pp. 89–133, Reidel Publishing Company, Dordrecht 2002.en_GB
dc.contributor.authorEmailandrzej.indrzejczak@filozof.uni.lodz.pl
dc.identifier.doi10.18778/0138-0680.47.4.03
dc.relation.volume47en_GB


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Except where otherwise noted, this item's license is described as This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.