Pokaż uproszczony rekord

dc.contributor.authorRizun, Mariia
dc.date.accessioned2019-09-16T12:04:13Z
dc.date.available2019-09-16T12:04:13Z
dc.date.issued2019
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/30140
dc.description.abstractIn modern and developing economic systems, Knowledge Management (KM) is considered to be one of the most important activities of almost any organization. KM process at universities includes didactic processes, among which we distinguish the process of individualization of education. Such process requires a large amount of information to be processed both by university workers and students. This paper suggests that Knowledge Graphs are a technology that facilitates and enhances KM processes at universities and gives an extended review of a Knowledge Graph phenomenon.en_GB
dc.description.abstractW nowoczesnych i rozwijających się ekonomicznych systemach zarządzane wiedzą (ZW) uważa się za jedną z najważniejszych czynności niemal w każdej organizacji. Proces ZW na uniwersytetach obejmuje procesy dydaktyczne, wśród których wyróżniamy proces indywidualizacji kształcenia. Taki proces wymaga przetworzenia dużej ilości informacji zarówno przez pracowników uniwersytetu, jak i przez studentów. W artykule zaproponowano graf wiedzy jako technologię, która ułatwia i usprawnia procesy ZW na uniwersytetach, oraz przedstawiono rozszerzony przegląd zjawiska grafu wiedzy.pl_PL
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Oeconomica; 342
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.en_GB
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0en_GB
dc.subjectKnowledge Graphen_GB
dc.subjectKnowledge Schemaen_GB
dc.subjectResource Description Frameworken_GB
dc.subjectinformationen_GB
dc.subjectdataen_GB
dc.subjectknowledgeen_GB
dc.subjectmodelen_GB
dc.subjectdidactic processen_GB
dc.subjectgraf wiedzypl_PL
dc.subjectschemat wiedzypl_PL
dc.subjectResource Description Frameworkpl_PL
dc.subjectinformacjapl_PL
dc.subjectdanepl_PL
dc.subjectwiedzapl_PL
dc.subjectmodelpl_PL
dc.subjectproces dydaktycznypl_PL
dc.titleKnowledge Graph Application in Education: a Literature Reviewen_GB
dc.title.alternativeWykorzystanie grafu wiedzy w edukacji: przegląd literaturypl_PL
dc.typeArticleen_GB
dc.page.number7-19
dc.contributor.authorAffiliationDepartment of Informatics, Faculty of Informatics and Communication, University of Economics in Katowice
dc.identifier.eissn2353-7663
dc.referencesBlumauer A. (2014), From Taxonomies over Ontologies to Knowledge Graphs – The Semantic Puzzle, https://semantic‑web.com/2014/07/15/from‑taxonomies‑over‑ontologies‑to‑knowledge‑graphs [accessed: 17.02.2019].pl_PL
dc.referencesBordes A., Usunier N., Garcia‑Duran A., Weston J., Yakhnenko O. (2013), Translating embeddings for modeling multi‑relational data, [in:] C. J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K. Q. Weinberger (eds.), Proceedings of the Conference Advances in Neural Information Processing Systems 26 (NIPS 2013), pp. 2787–2795, http://papers.nips.cc/paper/5071‑translating‑embeddings‑for‑modeling‑multi‑relational‑data.pdf [accessed: 17.02.2019].pl_PL
dc.referencesBordes A., Weston J., Collobert R., Bengio Y. (2011), Learning structured embeddings of knowledge bases, Twenty‑Fifth AAAI Conference on Artificial Intelligence, http://ronan.collobert.com/pub/matos/2011_knowbases_aaai.pdf [accessed: 1.07.2018].pl_PL
dc.referencesChang K. W., Yih W. T., Yang B., Meek C. (2014), Typed tensor decomposition of knowledge bases for relation extraction, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1568–1579, http://www.aclweb.org/anthology/D14–1165 [accessed: 5.07.2018].pl_PL
dc.referencesChowdhury F. R.R., Ma C., Islam M. R., Namaki M. H., Faruk M. O., Doppa J. R. (2017), Select‑and‑Evaluate: A Learning Framework for Large‑Scale Knowledge Graph Search, Asian Conference on Machine Learning, pp. 129–144, http://proceedings.mlr.press/v77/chowdhury17a/chowdhury17a.pdf [accessed: 17.02.2019].pl_PL
dc.referencesCmap Software (2019), https://cmap.ihmc.us/ [accessed: 17.04.2019].pl_PL
dc.referencesCui Q., Gao B., Bian J., Qiu S., Dai H., Liu T. Y. (2015), KNET: A general framework for learning word embedding using morphological knowledge, “ACM Transactions on Information Systems (TOIS)”, no. 34(1), https://arxiv.org/pdf/1407.1687.pdf [accessed: 17.02.2019].pl_PL
dc.referencesDBpedia (2017), DBpedia Version 2016–10, https://wiki.dbpedia.org/develop/datasets/dbpedia‑version–2016–10 [accessed: 17.04.2019].pl_PL
dc.referencesGalkin M., Auer S., Vidal M. E., Scerri S. (2017), Enterprise Knowledge Graphs: A Semantic Approach for Knowledge Management in the Next Generation of Enterprise Information Systems, Proceedings of the 19th International Conference on Enterprise Information Systems 2017, vol. 2, pp. 88–98, http://www.scitepress.org/Papers/2017/63252/63252.pdf [accessed: 17.02.2019].pl_PL
dc.referencesGomez‑Perez J. M., Pan J. Z., Vetere G., Wu H. (2017), Enterprise knowledge graph: An introduction, [in:] J. Z. Pan, G. Vetere, J. M. Gomez-Perez and H. Wu (eds.), Exploiting linked data and knowledge graphs in large organisations, Springer, Cham, pp. 1–14.pl_PL
dc.referencesJetschni J., Meister V. G. (2017), Schema engineering for enterprise knowledge graphs: A reflecting survey and case study, 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS), IEEE, pp. 271–277.pl_PL
dc.referencesJi G., He S., Xu L., Liu K., Zhao J. (2015), Knowledge graph embedding via dynamic mapping matrix, Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, vol. 1, pp. 687–696, http://www.aclweb.org/anthology/P15–1067 [accessed: 9.07.2018].pl_PL
dc.referencesLin Y., Liu Z., Sun M., Liu Y., Zhu X. (2015), Learning entity and relation embeddings for knowledge graph completion, Proceedings of the Twenty‑Ninth AAAI Conference on Artificial Intelligence, https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewFile/9571/9523 [accessed: 17.02.2019].pl_PL
dc.referencesMa S., Ding J., Jia W., Wang K., Guo M. (2017), TransT: Type‑based multiple embedding representations for knowledge graph completion, [in:] Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, Cham, pp. 717–733, http://ecmlpkdd2017.ijs.si/papers/paperID314.pdf [accessed: 10.07.2018].pl_PL
dc.referencesMasuch L., Muszynski H., Raethlein B. (2014), Enterprise Knowledge Graph, www.slideshare.net/BenjaminRaethlein/enterprise‑knowledge‑graph–56858153 [accessed: 11.06.2018].pl_PL
dc.referencesMikolov T., Chen K., Corrado G., Dean J. (2013a), Efficient estimation of word representations in vector space, https://arxiv.org/pdf/1301.3781.pdf [accesses: 17.02.2019].pl_PL
dc.referencesMikolov T., Sutskever I., Chen K., Corrado G. S., Dean J. (2013b), Distributed representations of words and phrases and their compositionality, https://arxiv.org/abs/1310.4546 [accesses: 17.02.2019].pl_PL
dc.referencesNickel M., Murphy K., Tresp V., Gabrilovich E. (2016), A review of relational machine learning for knowledge graphs, Proceedings of the Institute of Electrical and Electronics Engineers, no. 104(1), pp. 11–33, https://arxiv.org/abs/1503.00759 [accessed: 27.05.2018].pl_PL
dc.referencesNickel M., Tresp V., Kriegel H. P. (2011), A Three‑Way Model for Collective Learning on Multi‑Relational Data, Proceedings of the 28th International Conference on Machine Learning, vol. 11, pp. 809–816, http://www.icml–2011.org/papers/438_icmlpaper.pdf [accessed: 8.07.2018].pl_PL
dc.referencesPaulheim H. (2016), Knowledge graph refinement: A survey of approaches and evaluation methods, “Semantic Web”, no. 8(3), pp. 489–508, www.semantic‑web‑journal.net/system/files/swj1167.pdf [accessed: 27.05.2018].pl_PL
dc.referencesPirrò G. (2015), Explaining and suggesting relatedness in knowledge graphs, [in:] International Semantic Web Conference, [in:] M. Arenas, O. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan and S. Staab (eds.), The Semantic Web – ISWC 2015. ISWC 2015. Lecture Notes in Computer Science, vol. 9366. Springer, Cham, http://disi.unitn.it/~pavel/OM/articles/93660561.pdf [accessed: 17.02.2019].pl_PL
dc.referencesPujara J., London B., Getoor L., Cohen W. W. (2015), Online Inference for Knowledge Graph Construction, Fifth International Workshop on Statistical Relational AI, www.semanticscholar.org [accessed: 27.05.2018].pl_PL
dc.referencesSinghal A. (2012), Introducing the Knowledge Graph: Things, not Strings, https://www.blog.google/products/search/introducing‑knowledge‑graph‑things‑not [accessed: 17.04.2019].pl_PL
dc.referencesSocher R., Chen D., Manning C. D., Ng A. (2013), Reasoning with neural tensor networks for knowledge base completion, [in:] C. J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani and K. Q. Weinberger (eds.), Proceedings of the conference Advances in neural information processing systems 26 (NIPS 2013), pp. 926–934, https://papers.nips.cc/paper/5028‑reasoning‑with‑neural‑tensor‑networks‑for‑knowledge‑base‑completion.pdf [accessed: 17.02.2019].pl_PL
dc.referencesTian F., Gao B., Chen E. H., Liu T. Y. (2016), Learning better word embedding by asymmetric low‑rank projection of knowledge graph, “Journal of Computer Science and Technology”, no. 31(3), pp. 624–634, https://link.springer.com/content/pdf/10.1007/s11390–016–1651–5.pdf [accessed: 17.02.2019].pl_PL
dc.referencesVelampalli S., Jonnalagedda M. V. (2017), Graph based knowledge discovery using map reduce and subdue algorithm, “Data & Knowledge Engineering”, no. 111, pp. 103–113.pl_PL
dc.referencesWang Z., Zhang J., Feng J., Chen Z. (2014), Knowledge graph embedding by translating on hyper planes, Proceedings of the Twenty‑Eighth AAAI Conference on Artificial Intelligence, https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/viewFile/8531/8546 [accessed: 17.02.2019].pl_PL
dc.referencesWikidata (2018), https://www.wikidata.org/wiki/Wikidata: Main_Page [accessed: 17.04.2019].pl_PL
dc.referencesWikimedia Commons (2019), https://commons.wikimedia.org/wiki/Main_Page [accessed: 17.04.2019].pl_PL
dc.referencesWorld Wide Web Consortium W3C (2014), Resource Description Framework, https://www.w3.org/2001/sw/wiki/RDF [accessed: 17.04.2019].pl_PL
dc.referencesWorld Wide Web Consortium W3C (2019), https://www.w3.org/ [accessed: 17.04.2019].pl_PL
dc.referencesWu Y., Pan J., Lu P., Lin K., Yu Z. (2017), Knowledge Graph Embedding Translation Based on Constraints, “Journal of Information Hiding and Multimedia Signal Processing, Ubiquitous International”, no. 8(5), pp. 1119–1131, bit.kuas.edu.tw/~jihmsp/2017/vol8/JIH‑MSP–2017–05–016.pdf [accessed: 17.02.2019].pl_PL
dc.referencesXu C., Bai Y., Bian J., Gao B., Wang G., Liu X., Liu T. Y. (2014), Rc‑net: A general framework for incorporating knowledge into word representations, Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, ACM, pp. 1219–1228, http://ylbai.asiteof.me/km0814‑xu.pdf [accessed: 17.02.2019].pl_PL
dc.referencesYu M., Dredze M. (2014), Improving lexical embeddings with semantic knowledge, Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, vol. 2, pp. 545–550, www.aclweb.org/anthology/P14–2089 [accessed: 17.02.2019].pl_PL
dc.contributor.authorEmailmariia.rizun@uekat.pl
dc.identifier.doi10.18778/0208-6018.342.01
dc.relation.volume3en_GB
dc.subject.jelC45en_GB
dc.subject.jelD83en_GB
dc.subject.jelD89en_GB
dc.subject.jelI23en_GB


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.