dc.contributor.author | Rizun, Mariia | |
dc.date.accessioned | 2019-09-16T12:04:13Z | |
dc.date.available | 2019-09-16T12:04:13Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0208-6018 | |
dc.identifier.uri | http://hdl.handle.net/11089/30140 | |
dc.description.abstract | In modern and developing economic systems, Knowledge Management (KM) is considered to be one of the most important activities of almost any organization. KM process at universities includes didactic processes, among which we distinguish the process of individualization of education. Such process requires a large amount of information to be processed both by university workers and students. This paper suggests that Knowledge Graphs are a technology that facilitates and enhances KM processes at universities and gives an extended review of a Knowledge Graph phenomenon. | en_GB |
dc.description.abstract | W nowoczesnych i rozwijających się ekonomicznych systemach zarządzane wiedzą (ZW) uważa się za jedną z najważniejszych czynności niemal w każdej organizacji. Proces ZW na uniwersytetach obejmuje procesy dydaktyczne, wśród których wyróżniamy proces indywidualizacji kształcenia. Taki proces wymaga przetworzenia dużej ilości informacji zarówno przez pracowników uniwersytetu, jak i przez studentów. W artykule zaproponowano graf wiedzy jako technologię, która ułatwia i usprawnia procesy ZW na uniwersytetach, oraz przedstawiono rozszerzony przegląd zjawiska grafu wiedzy. | pl_PL |
dc.language.iso | en | en_GB |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | en_GB |
dc.relation.ispartofseries | Acta Universitatis Lodziensis. Folia Oeconomica; 342 | |
dc.rights | This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. | en_GB |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0 | en_GB |
dc.subject | Knowledge Graph | en_GB |
dc.subject | Knowledge Schema | en_GB |
dc.subject | Resource Description Framework | en_GB |
dc.subject | information | en_GB |
dc.subject | data | en_GB |
dc.subject | knowledge | en_GB |
dc.subject | model | en_GB |
dc.subject | didactic process | en_GB |
dc.subject | graf wiedzy | pl_PL |
dc.subject | schemat wiedzy | pl_PL |
dc.subject | Resource Description Framework | pl_PL |
dc.subject | informacja | pl_PL |
dc.subject | dane | pl_PL |
dc.subject | wiedza | pl_PL |
dc.subject | model | pl_PL |
dc.subject | proces dydaktyczny | pl_PL |
dc.title | Knowledge Graph Application in Education: a Literature Review | en_GB |
dc.title.alternative | Wykorzystanie grafu wiedzy w edukacji: przegląd literatury | pl_PL |
dc.type | Article | en_GB |
dc.page.number | 7-19 | |
dc.contributor.authorAffiliation | Department of Informatics, Faculty of Informatics and Communication, University of Economics in Katowice | |
dc.identifier.eissn | 2353-7663 | |
dc.references | Blumauer A. (2014), From Taxonomies over Ontologies to Knowledge Graphs – The Semantic Puzzle, https://semantic‑web.com/2014/07/15/from‑taxonomies‑over‑ontologies‑to‑knowledge‑graphs [accessed: 17.02.2019]. | pl_PL |
dc.references | Bordes A., Usunier N., Garcia‑Duran A., Weston J., Yakhnenko O. (2013), Translating embeddings for modeling multi‑relational data, [in:] C. J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K. Q. Weinberger (eds.), Proceedings of the Conference Advances in Neural Information Processing Systems 26 (NIPS 2013), pp. 2787–2795, http://papers.nips.cc/paper/5071‑translating‑embeddings‑for‑modeling‑multi‑relational‑data.pdf [accessed: 17.02.2019]. | pl_PL |
dc.references | Bordes A., Weston J., Collobert R., Bengio Y. (2011), Learning structured embeddings of knowledge bases, Twenty‑Fifth AAAI Conference on Artificial Intelligence, http://ronan.collobert.com/pub/matos/2011_knowbases_aaai.pdf [accessed: 1.07.2018]. | pl_PL |
dc.references | Chang K. W., Yih W. T., Yang B., Meek C. (2014), Typed tensor decomposition of knowledge bases for relation extraction, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1568–1579, http://www.aclweb.org/anthology/D14–1165 [accessed: 5.07.2018]. | pl_PL |
dc.references | Chowdhury F. R.R., Ma C., Islam M. R., Namaki M. H., Faruk M. O., Doppa J. R. (2017), Select‑and‑Evaluate: A Learning Framework for Large‑Scale Knowledge Graph Search, Asian Conference on Machine Learning, pp. 129–144, http://proceedings.mlr.press/v77/chowdhury17a/chowdhury17a.pdf [accessed: 17.02.2019]. | pl_PL |
dc.references | Cmap Software (2019), https://cmap.ihmc.us/ [accessed: 17.04.2019]. | pl_PL |
dc.references | Cui Q., Gao B., Bian J., Qiu S., Dai H., Liu T. Y. (2015), KNET: A general framework for learning word embedding using morphological knowledge, “ACM Transactions on Information Systems (TOIS)”, no. 34(1), https://arxiv.org/pdf/1407.1687.pdf [accessed: 17.02.2019]. | pl_PL |
dc.references | DBpedia (2017), DBpedia Version 2016–10, https://wiki.dbpedia.org/develop/datasets/dbpedia‑version–2016–10 [accessed: 17.04.2019]. | pl_PL |
dc.references | Galkin M., Auer S., Vidal M. E., Scerri S. (2017), Enterprise Knowledge Graphs: A Semantic Approach for Knowledge Management in the Next Generation of Enterprise Information Systems, Proceedings of the 19th International Conference on Enterprise Information Systems 2017, vol. 2, pp. 88–98, http://www.scitepress.org/Papers/2017/63252/63252.pdf [accessed: 17.02.2019]. | pl_PL |
dc.references | Gomez‑Perez J. M., Pan J. Z., Vetere G., Wu H. (2017), Enterprise knowledge graph: An introduction, [in:] J. Z. Pan, G. Vetere, J. M. Gomez-Perez and H. Wu (eds.), Exploiting linked data and knowledge graphs in large organisations, Springer, Cham, pp. 1–14. | pl_PL |
dc.references | Jetschni J., Meister V. G. (2017), Schema engineering for enterprise knowledge graphs: A reflecting survey and case study, 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS), IEEE, pp. 271–277. | pl_PL |
dc.references | Ji G., He S., Xu L., Liu K., Zhao J. (2015), Knowledge graph embedding via dynamic mapping matrix, Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, vol. 1, pp. 687–696, http://www.aclweb.org/anthology/P15–1067 [accessed: 9.07.2018]. | pl_PL |
dc.references | Lin Y., Liu Z., Sun M., Liu Y., Zhu X. (2015), Learning entity and relation embeddings for knowledge graph completion, Proceedings of the Twenty‑Ninth AAAI Conference on Artificial Intelligence, https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewFile/9571/9523 [accessed: 17.02.2019]. | pl_PL |
dc.references | Ma S., Ding J., Jia W., Wang K., Guo M. (2017), TransT: Type‑based multiple embedding representations for knowledge graph completion, [in:] Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, Cham, pp. 717–733, http://ecmlpkdd2017.ijs.si/papers/paperID314.pdf [accessed: 10.07.2018]. | pl_PL |
dc.references | Masuch L., Muszynski H., Raethlein B. (2014), Enterprise Knowledge Graph, www.slideshare.net/BenjaminRaethlein/enterprise‑knowledge‑graph–56858153 [accessed: 11.06.2018]. | pl_PL |
dc.references | Mikolov T., Chen K., Corrado G., Dean J. (2013a), Efficient estimation of word representations in vector space, https://arxiv.org/pdf/1301.3781.pdf [accesses: 17.02.2019]. | pl_PL |
dc.references | Mikolov T., Sutskever I., Chen K., Corrado G. S., Dean J. (2013b), Distributed representations of words and phrases and their compositionality, https://arxiv.org/abs/1310.4546 [accesses: 17.02.2019]. | pl_PL |
dc.references | Nickel M., Murphy K., Tresp V., Gabrilovich E. (2016), A review of relational machine learning for knowledge graphs, Proceedings of the Institute of Electrical and Electronics Engineers, no. 104(1), pp. 11–33, https://arxiv.org/abs/1503.00759 [accessed: 27.05.2018]. | pl_PL |
dc.references | Nickel M., Tresp V., Kriegel H. P. (2011), A Three‑Way Model for Collective Learning on Multi‑Relational Data, Proceedings of the 28th International Conference on Machine Learning, vol. 11, pp. 809–816, http://www.icml–2011.org/papers/438_icmlpaper.pdf [accessed: 8.07.2018]. | pl_PL |
dc.references | Paulheim H. (2016), Knowledge graph refinement: A survey of approaches and evaluation methods, “Semantic Web”, no. 8(3), pp. 489–508, www.semantic‑web‑journal.net/system/files/swj1167.pdf [accessed: 27.05.2018]. | pl_PL |
dc.references | Pirrò G. (2015), Explaining and suggesting relatedness in knowledge graphs, [in:] International Semantic Web Conference, [in:] M. Arenas, O. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan and S. Staab (eds.), The Semantic Web – ISWC 2015. ISWC 2015. Lecture Notes in Computer Science, vol. 9366. Springer, Cham, http://disi.unitn.it/~pavel/OM/articles/93660561.pdf [accessed: 17.02.2019]. | pl_PL |
dc.references | Pujara J., London B., Getoor L., Cohen W. W. (2015), Online Inference for Knowledge Graph Construction, Fifth International Workshop on Statistical Relational AI, www.semanticscholar.org [accessed: 27.05.2018]. | pl_PL |
dc.references | Singhal A. (2012), Introducing the Knowledge Graph: Things, not Strings, https://www.blog.google/products/search/introducing‑knowledge‑graph‑things‑not [accessed: 17.04.2019]. | pl_PL |
dc.references | Socher R., Chen D., Manning C. D., Ng A. (2013), Reasoning with neural tensor networks for knowledge base completion, [in:] C. J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani and K. Q. Weinberger (eds.), Proceedings of the conference Advances in neural information processing systems 26 (NIPS 2013), pp. 926–934, https://papers.nips.cc/paper/5028‑reasoning‑with‑neural‑tensor‑networks‑for‑knowledge‑base‑completion.pdf [accessed: 17.02.2019]. | pl_PL |
dc.references | Tian F., Gao B., Chen E. H., Liu T. Y. (2016), Learning better word embedding by asymmetric low‑rank projection of knowledge graph, “Journal of Computer Science and Technology”, no. 31(3), pp. 624–634, https://link.springer.com/content/pdf/10.1007/s11390–016–1651–5.pdf [accessed: 17.02.2019]. | pl_PL |
dc.references | Velampalli S., Jonnalagedda M. V. (2017), Graph based knowledge discovery using map reduce and subdue algorithm, “Data & Knowledge Engineering”, no. 111, pp. 103–113. | pl_PL |
dc.references | Wang Z., Zhang J., Feng J., Chen Z. (2014), Knowledge graph embedding by translating on hyper planes, Proceedings of the Twenty‑Eighth AAAI Conference on Artificial Intelligence, https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/viewFile/8531/8546 [accessed: 17.02.2019]. | pl_PL |
dc.references | Wikidata (2018), https://www.wikidata.org/wiki/Wikidata: Main_Page [accessed: 17.04.2019]. | pl_PL |
dc.references | Wikimedia Commons (2019), https://commons.wikimedia.org/wiki/Main_Page [accessed: 17.04.2019]. | pl_PL |
dc.references | World Wide Web Consortium W3C (2014), Resource Description Framework, https://www.w3.org/2001/sw/wiki/RDF [accessed: 17.04.2019]. | pl_PL |
dc.references | World Wide Web Consortium W3C (2019), https://www.w3.org/ [accessed: 17.04.2019]. | pl_PL |
dc.references | Wu Y., Pan J., Lu P., Lin K., Yu Z. (2017), Knowledge Graph Embedding Translation Based on Constraints, “Journal of Information Hiding and Multimedia Signal Processing, Ubiquitous International”, no. 8(5), pp. 1119–1131, bit.kuas.edu.tw/~jihmsp/2017/vol8/JIH‑MSP–2017–05–016.pdf [accessed: 17.02.2019]. | pl_PL |
dc.references | Xu C., Bai Y., Bian J., Gao B., Wang G., Liu X., Liu T. Y. (2014), Rc‑net: A general framework for incorporating knowledge into word representations, Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, ACM, pp. 1219–1228, http://ylbai.asiteof.me/km0814‑xu.pdf [accessed: 17.02.2019]. | pl_PL |
dc.references | Yu M., Dredze M. (2014), Improving lexical embeddings with semantic knowledge, Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, vol. 2, pp. 545–550, www.aclweb.org/anthology/P14–2089 [accessed: 17.02.2019]. | pl_PL |
dc.contributor.authorEmail | mariia.rizun@uekat.pl | |
dc.identifier.doi | 10.18778/0208-6018.342.01 | |
dc.relation.volume | 3 | en_GB |
dc.subject.jel | C45 | en_GB |
dc.subject.jel | D83 | en_GB |
dc.subject.jel | D89 | en_GB |
dc.subject.jel | I23 | en_GB |