Show simple item record

dc.contributor.authorKurbis, Nils
dc.description.abstractThis paper presents a way of formalising definite descriptions with a binary quantifier ℩, where ℩x[F, G] is read as `The F is G'. Introduction and elimination rules for ℩ in a system of intuitionist negative free logic are formulated. Procedures for removing maximal formulas of the form ℩x[F, G] are given, and it is shown that deductions in the system can be brought into normal form.en_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic; 2
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.en_GB
dc.subjectdefinite descriptionsen_GB
dc.subjectnegative intuitionist free logicen_GB
dc.subjectnatural deductionen_GB
dc.titleA Binary Quantifier for Definite Descriptions in Intuitionist Negative Free Logic: Natural Deduction and Normalisationen_GB
dc.contributor.authorAffiliationDepartment of Philosophy, University College London, London, UK
dc.referencesD. Bostock, Intermediate Logic, Oxford: Clarendon Press, 1997.en_GB
dc.referencesM. Dummett, Frege. Philosophy of Language, 2 ed., Cambridge: Harvard University Press, 1981.en_GB
dc.referencesA. Indrzejczak, Cut-Free Modal Theory of Definite Descriptions, [in:] Advances in Modal Logic, G. Bezhanishvili, G. D'Agostino, G. Metcalfe and T. Studer (eds.), vol. 12, pp. 359–378, London: College Publications, 2018.en_GB
dc.referencesA. Indrzejczak, Fregean Description Theory in Proof-Theoretical Setting, Logic and Logical Philosophy, vol. 28, no. 1 (2018), pp. 137–155.
dc.referencesD. Prawitz, Natural Deduction: A Proof-Theoretical Study, Stockholm, Göteborg, Uppsala: Almqvist and Wiksell, 1965.en_GB
dc.referencesD. Scott, Identity and Existence in Intuitionistic Logic, [in:] Applications of Sheaves, Michael Fourman, Christopher Mulvery, Dana Scott (eds.), Berlin, Heidelberg, New York: Springer, 1979.
dc.referencesN. Tennant, A General Theory of Abstraction Operators, The Philosophical Quarterly, vol. 54, no. 214 (2004), pp. 105–133.
dc.referencesN. Tennant, Natural Logic, Edinburgh: Edinburgh University Press, 1978.en_GB
dc.referencesA. S. Troelstra and H. Schwichtenberg, Basic Proof Theory, Cambridge University Press, 2 ed., 2000.

Files in this item


This item appears in the following Collection(s)

Show simple item record

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Except where otherwise noted, this item's license is described as This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.