Show simple item record

dc.contributor.authorTypańska-Czajka, Lidia
dc.date.accessioned2019-10-13T10:39:49Z
dc.date.available2019-10-13T10:39:49Z
dc.date.issued2019
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/30605
dc.description.abstractThe only maximal extension of the logic of relevant entailment E is the classical logic CL. A logic L ⊆ [E,CL] called pre-maximal if and only if L is a coatom in the interval [E,CL]. We present two denumerable infinite sequences of premaximal extensions of the logic E. Note that for the relevant logic R there exist exactly three pre-maximal logics, i.e. coatoms in the interval [R,CL].en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic; 1
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.en_GB
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0en_GB
dc.subjectrelevant logicen_GB
dc.subjectnon-classical logicsen_GB
dc.subjectlatticeen_GB
dc.subjectuniversal algebraen_GB
dc.titleTwo Infinite Sequences of Pre-Maximal Extensions of the Relevant Logic Een_GB
dc.typeArticleen_GB
dc.page.number29–43
dc.contributor.authorAffiliationCollegium Da Vinci, Poznań, Poland
dc.identifier.eissn2449-836X
dc.referencesW. Ackermann, Begru¨ndung Einer Strengen Implikation, The Journal of Symbolic Logic, Vol. 21, 2 (1956), pp. 113–128.
dc.referencesA. R. Anderson, N. D. Belnap, Jr., Entailment. The Logic of relevance and necessity, Princeton University Press, Vol. I (1975).
dc.referencesN. D. Belnap, Jr., Intesional Models for First Degree Formula, The Journal of Symbolic Logic, Vol. 32, 1 (1967), pp. 1–22.
dc.referencesW. J. Blok, D. Pigozzi, Algbebraizable logics, Memoirs of the American Mathematical Society, 1989.
dc.referencesJ. M. Font, G. B. Rodriguez, Note on algebraic models for relevance logic, Zeitschrift fur Matematische Logik und Grundlagen der Mathe- ¨ matic, Vol. 36, 6 (1990), pp. 535–540.
dc.referencesW. Dziobiak, There are 2 ℵ0 Logics with the Relevance Principle Between R and RM, Studia Logica, Vol. XLII (1983), pp. 49–61.
dc.referencesL. Maksimowa, Struktury s implikacjiej, Algebra and Logic, Vol. 12, 4 (1973), pp. 445–467.
dc.referencesL. Maksimowa, O Modeljach iscislenija E, Algebra and Logic, Vol. 6, 6 (1967), pp. 5–20.
dc.referencesR. M. Martin, Twenty-Third Annual Meeting of the Association for Symbolic Logic, The Journal of Symbolic Logic, Vol. 23, 4 (1958), pp. 456–461.
dc.referencesR. K. Meyer, E and S4, Noter Dame Journal of Formal Logic, Vol. XI, 2 (1970), pp. 181–199.
dc.referencesK. Swirydowicz, ´ There exists exactly two maximal strictly relevant extensions of the relevant logic R, The Journal of Symbolic Logic, Vol. 64, 3 (1999), pp. 1125–1154.
dc.referencesK. Swirydowicz, ´ A Remark on the Maximal Extensions of the Relevant Logic R, Reports on Mathematical Logic, 29 (1995), pp. 19–33.
dc.referencesM. Tokarz, Essays in matrix semantics of relevant logics, The Institute of Philosophy and Sociology of the Polish Academy of Sciences, Warsaw 1980.
dc.contributor.authorEmaillidia.typanska@cdv.pl
dc.identifier.doi10.18778/0138-0680.48.1.03
dc.relation.volume48en_GB


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Except where otherwise noted, this item's license is described as This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.