dc.contributor.author | Typańska-Czajka, Lidia | |
dc.date.accessioned | 2019-10-13T10:39:49Z | |
dc.date.available | 2019-10-13T10:39:49Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/30605 | |
dc.description.abstract | The only maximal extension of the logic of relevant entailment E is the classical logic CL. A logic L ⊆ [E,CL] called pre-maximal if and only if L is a coatom in the interval [E,CL]. We present two denumerable infinite sequences of premaximal extensions of the logic E. Note that for the relevant logic R there exist exactly three pre-maximal logics, i.e. coatoms in the interval [R,CL]. | en_GB |
dc.language.iso | en | en_GB |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | en_GB |
dc.relation.ispartofseries | Bulletin of the Section of Logic; 1 | |
dc.rights | This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. | en_GB |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0 | en_GB |
dc.subject | relevant logic | en_GB |
dc.subject | non-classical logics | en_GB |
dc.subject | lattice | en_GB |
dc.subject | universal algebra | en_GB |
dc.title | Two Infinite Sequences of Pre-Maximal Extensions of the Relevant Logic E | en_GB |
dc.type | Article | en_GB |
dc.page.number | 29–43 | |
dc.contributor.authorAffiliation | Collegium Da Vinci, Poznań, Poland | |
dc.identifier.eissn | 2449-836X | |
dc.references | W. Ackermann, Begru¨ndung Einer Strengen Implikation, The Journal of
Symbolic Logic, Vol. 21, 2 (1956), pp. 113–128. | |
dc.references | A. R. Anderson, N. D. Belnap, Jr., Entailment. The Logic of relevance and
necessity, Princeton University Press, Vol. I (1975). | |
dc.references | N. D. Belnap, Jr., Intesional Models for First Degree Formula, The Journal
of Symbolic Logic, Vol. 32, 1 (1967), pp. 1–22. | |
dc.references | W. J. Blok, D. Pigozzi, Algbebraizable logics, Memoirs of the American
Mathematical Society, 1989. | |
dc.references | J. M. Font, G. B. Rodriguez, Note on algebraic models for relevance logic,
Zeitschrift fur Matematische Logik und Grundlagen der Mathe- ¨
matic, Vol. 36, 6 (1990), pp. 535–540. | |
dc.references | W. Dziobiak, There are 2
ℵ0 Logics with the Relevance Principle Between R
and RM, Studia Logica, Vol. XLII (1983), pp. 49–61. | |
dc.references | L. Maksimowa, Struktury s implikacjiej, Algebra and Logic, Vol. 12, 4
(1973), pp. 445–467. | |
dc.references | L. Maksimowa, O Modeljach iscislenija E, Algebra and Logic, Vol. 6, 6
(1967), pp. 5–20. | |
dc.references | R. M. Martin, Twenty-Third Annual Meeting of the Association for Symbolic
Logic, The Journal of Symbolic Logic, Vol. 23, 4 (1958), pp. 456–461. | |
dc.references | R. K. Meyer, E and S4, Noter Dame Journal of Formal Logic, Vol. XI,
2 (1970), pp. 181–199. | |
dc.references | K. Swirydowicz, ´ There exists exactly two maximal strictly relevant extensions
of the relevant logic R, The Journal of Symbolic Logic, Vol. 64, 3 (1999),
pp. 1125–1154. | |
dc.references | K. Swirydowicz, ´ A Remark on the Maximal Extensions of the Relevant Logic
R, Reports on Mathematical Logic, 29 (1995), pp. 19–33. | |
dc.references | M. Tokarz, Essays in matrix semantics of relevant logics, The Institute
of Philosophy and Sociology of the Polish Academy of Sciences,
Warsaw 1980. | |
dc.contributor.authorEmail | lidia.typanska@cdv.pl | |
dc.identifier.doi | 10.18778/0138-0680.48.1.03 | |
dc.relation.volume | 48 | en_GB |