Pokaż uproszczony rekord

dc.contributor.authorOrwat-Acedańska, Agnieszka
dc.date.accessioned2021-03-05T11:53:31Z
dc.date.available2021-03-05T11:53:31Z
dc.date.issued2020-04-03
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/34095
dc.description.abstractThe aim of the paper is to study relationships between selected socio‑economic factors and health of European citizens. The health level is measured by selected global burden of disease measures – DALYs (Disability Adjusted Life Years) and its two components: YLL (Years of Life Lost) and YLD (Years Lived with Disability). We identify which factors significantly affect these indicators of health. The empirical study uses a panel data comprising 16 countries mostly from the old‑EU in the period 2003–2013. Fixed‑effects dynamic spatial panel data (DSPD) models are used to account for autocorrelations of the dependent variables across time and space. The models are estimated with a novel, modified quasi maximum likelihood Yang method based on M‑estimators. The approach is robust on the distribution of the initial observations. The empirical analysis covers specification, estimation, and verification of the models. The results show that changes in YLD are significantly related to alcohol consumption, healthcare spending, social spending, GDP growth rate and years of education. Exactly the same set of factors is associated with variation in DALYs. Sensitivity of the YLL component to the socio‑economic factors is considerably weaker.en
dc.description.abstractCelem artykułu jest analiza powiązań między wybranymi czynnikami społeczno‑ekonomicznymi a stanem zdrowia mieszkańcow Europy. Stan zdrowia opisywany jest za pomocą wybranych wskaźnikow globalnego obciążenia chorobami – DALY (utracona długość życia korygowana niepełnosprawnością) oraz jego dwoma komponentami: YLL (lata życia z chorobą lub niepełnosprawnością) oraz YLD (lata życia utracone wskutek przedwczesnej śmierci). W opracowaniu zidentyfikowane zostały czynniki, ktore istotnie wpływają na kształtowanie się tych wskaźnikow braku zdrowia. W analizie empirycznej wykorzystano dane panelowe obejmujące 16 krajow, głownie ze „starej UE”, w latach 2003–2013. Do modelowania zależności wskaźnikow globalnego obciążenia chorobami od czynnikow społeczno‑ekonomicznych wykorzystane zostały dynamiczne przestrzenne modele panelowe z efektami ustalonymi (DSPD). Modele te estymowane są za pomocą nowego podejścia (Yanga), polegającego na modyfikacji metody największej wiarygodności i opartego na M‑estymacji tego typu modeli. Metoda ta jest odporna na założenia dotyczące rozkładu tzw. warunkow początkowych. Analiza empiryczna obejmuje specyfikację, estymację oraz statystyczną weryfikację modeli. Wyniki wskazują, że zmienność YLD jest w znacznym stopniu związana ze spożyciem alkoholu, wydatkami na opiekę zdrowotną, wydatkami socjalnymi, tempem wzrostu PKB oraz latami edukacji. Ta sama grupa czynnikow jest związana ze zmiennością DALY. Natomiast wrażliwość składowej YLL na czynniki społeczno‑ekonomiczne jest znacznie słabsza.pl
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Oeconomica;347en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectdynamic spatial panel data models (DSPD)en
dc.subjectM-estimationen
dc.subjectfixed effectsen
dc.subjectshort panelsen
dc.subjectdisease burden measuresen
dc.subjectsocio-economic factorsen
dc.subjectdynamiczne przestrzenne modele danych panelowychpl
dc.subjectM-estymacjapl
dc.subjectefekty ustalonepl
dc.subjectkrótkie panelepl
dc.subjectmiary globalnego obciążenia chorobamipl
dc.subjectczynniki społeczno-ekonomiczne.pl
dc.titleModelling Global Burden of Disease Measures in Selected European Countries Using Robust Dynamic Spatial Panel Data Modelsen
dc.title.alternativeModelowanie wskaźników obciążenia chorobami w wybranych krajach Europy za pomocą odpornych dynamicznych przestrzennych modeli panelowychpl
dc.typeArticle
dc.page.number109-127
dc.contributor.authorAffiliationUniversity of Economics in Katowice, Faculty of Informatics and Communication Department of Demography and Economic Statisticsen
dc.identifier.eissn2353-7663
dc.referencesAnand S., Hanson K. (1997), Disability adjusted lost years – a critical review, “Journal of Health Economics”, no. 16, pp. 685–702.en
dc.referencesAnand S., Hanson K. (1998), DALYs: efficiency versus equity, “World Development”, vol. 26, no. 2, pp. 307–310.en
dc.referencesBarker C., Green A. (1996), Opening the Debate on DALYs, “Health Policy and Planning”, no. 11, p. 179–183.en
dc.referencesBerman S. (1995), Otitis media in developing countries, “Pediatrics”, no. 96, pp. 126–131.en
dc.referencesBinder M., Hsiao C., Pesaran M. H. (2005), Estimation and inference in short panel vector autoregressions with unit roots and cointegration, “Econometric Theory”, no. 21, pp. 795–837.en
dc.referencesBun M. J., Carree M. A. (2005), Bias‑corrected estimation in dynamic panel data models, “Journal of Business and Economic Statistics”, no. 23, pp. 200–210.en
dc.referencesCavalini L. T., De Leon A. (2008), Morbidity and mortality in Brazilian communes: a multilevel study of association between socioeconomic and healthcare indicators, “International Journal of Epidemiology”, no. 37, pp. 775–785, http://doi.org/10.1093/ije/dyn088en
dc.referencesDahlgren G., Whitehead M. (2007), European Strategies for Tackling Social Inequities in Health: Leveling up Part 2, WHO Regional Office for Europe, Copenhagen.en
dc.referencesDańska‑Borsiak B. (2011), Dynamiczne modele panelowe w badaniach ekonomicznych, Wydawnictwo Uniwersytetu Łódzkiego, Łódź.en
dc.referencesDesjarlais R., Eisenberg L., Good B., Kleinman A. (1995), World mental health: problems and priorities in low income countries, Oxford University Press, New York.en
dc.referencesDevleesschauwer B., Noordhout C. M. de, Praet N., Duchateau L., Van Oyen H., Havelaar A. H., Haagsma J. A., Dorny P., Torgerson P. R., Speybroeck N. (2014), DALY calculation in practice: a stepwise approach, “International Journal of Public Health”, vol. 59, issue 3, pp. 571–574, http://doi.org/10.1007/s00038-014-0553‑yen
dc.referencesElhorst J. P. (2010a), Spatial Panel Data Models, [in:] M. M. Fischer, A. Getis (eds.), Handbook of Applied Spatial Analysis, Springer, Berlin, pp. 377–407.en
dc.referencesElhorst J. P. (2010b), Applied spatial econometric: raising the bar, “Spatial Economic Analysis”, no. 5, pp. 9–28.en
dc.referencesElhorst J. P. (2010c), Dynamic panels with endogenous interaction effects when T is small, “Regional Science and Urban Economics”, no. 40, pp. 272–282.en
dc.referencesElhorst J. P. (2012), Dynamic spatial panels: models, methods and inferences, “Journal of Geographical Systems”, no. 14, pp. 5–28, http://doi.org/10.1007/s10109-011-0158-4en
dc.referencesEurostat (2012), “Global Europe 2050” – Eurostat’s Report for the European Commission, https://ec.europa.eu/research/social‑sciences/pdf/policy_reviews/global‑europe–2050‑report_en.pdf [accessed: 30.11.2018].en
dc.referencesFrohlich N., Mustard C. (1996), A regional comparison of socioeconomic and health indices in a Canadian province, “Social Science and Medicine Journal”, vol. 42(9), pp. 1273–1281.en
dc.referencesGourieroux C., Phillips P. C.B., Yu J. (2010), Indirect inference for dynamic panel models, “Journal of Econometrics”, no. 157, pp. 68–77.en
dc.referencesHampel F. R., Ronchetti E. M., Rousseeuw P. J., Stahel W. A. (1986), Robust Statistics. The Approach Based on Influence Functions, John Wiley and Sons, New York.en
dc.referencesHsiao C., Pesaran M. H., Tahmiscioglu A. K. (2002), Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods, “Journal of Econometrics”, no. 109, pp. 107–150.en
dc.referenceshttp://www.who.int/social_determinants/sdh_definition/en/ [accessed: 30.11.2018].en
dc.referencesHuber P. J. (1981), Robust Statistics, Wiley, New York.en
dc.referencesKruiniger H. (2013), Quasi ML estimation of the panel AR(1) model with arbitrary initial conditions, “Journal of Econometrics”, no. 173, pp. 175–188, http://doi.org/10.1016/j.jeconom.2012.11.004en
dc.referencesLaurell A.C, Arellano L. O. (1996), Market commodities and poor relief: the World Bank proposal for health, “Journal of Health Economics”, vol. 26, no. 1, pp. 1–18.en
dc.referencesLee L. F., Yu J. (2010a), Estimation of spatial autoregressive panel data model a with fixed effects, “Journal of Econometrics”, no. 154, pp. 165–185, https://doi.org/10.1016/j.jeconom.2009.08.001en
dc.referencesLee L. F., Yu J. (2010b), Estimation of spatial panels: random components vs. fixed effects, unpublished manuscript, Ohio State University, Columbus.en
dc.referencesLee L. F., Yu J. (2010c), Some recent developments in spatial panel data models, “Regional Science and Urban Economics”, no. 40, pp. 255–271, http://doi.org/10.1016/j.regsciurbeco.2009.09.002en
dc.referencesLee L. F., Yu J. (2010d), A spatial dynamic panel data model with both time and individual fixed effects, “Econometric Theory”, no. 26, pp. 564–597.en
dc.referencesLozano R., Murray C. J.L., Frenk J., Bobadilla J.‑L. (1995), Burden of diseases assessment and health system reform: results of a study in Mexico, “Journal of International Development”, vol. 7, no. 3, pp. 555–564.en
dc.referencesMartens W. J., Niessen L. W., Rotmans J., Jetten T. H., McMichael A. J. (1995), Potential impact of global climate change on malaria risk, “Environmental Health Perspectives”, vol. 103, no. 5, pp. 458–464, http://doi.org/10.1289/ehp.95103458en
dc.referencesMurray C. J.L. (1994), Quantifying the burden of disease: the technical basis for disability‑adjusted life years, “Bulletin of the World Health Organization”, vol. 72(3), pp. 429–445.en
dc.referencesMurray C. J.L. (1996), Rethinking DALYs, [in:] C. J.L. Murray, A. D. Lopez (eds.), The Global Burden of Disease and Injury Series. Volume I. The Global Burden of Disease, Harvard School of Public Health, World Health Organization, World Bank, Boston, pp. 1–98.en
dc.referencesMurray C. J.L., Lopez A. D., Alan D. (1994), Global comparative assessments in the health sector: disease burden, expenditures and intervention packages, World Health Organization, Geneva.en
dc.referencesMurray C. J.L., Lopez A. D. (1996a), The Global Burden of Disease and Injury Series. Volume I. The Global Burden of Disease. A comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020, Harvard School of Public Health, World Bank, World Health Organization, Geneva.en
dc.referencesMurray C. J.L., Lopez A. D. (1996b), The Global Burden of Disease and Injury Series. Volume II. Global Health Statistics. A compendium of incidence, prevalence and mortality estimates for over 200 conditions, Harvard School of Public Health, World Bank, World Health Organization, Geneva.en
dc.referencesMurray C. J.L., Solomon J. A., Mathers C. D., Lopez A. D. (eds.) (2002), Summary measures of population health – concepts, ethics, measurement and applications, World Health Organization, Geneva.en
dc.referencesOrwat‑Acedańska A. (2019), Dynamic spatial panel data models in identifying socio‑economic factors affecting Europeans’ health level, “European Spatial Research and Policy”, vol. 26, no. 1, pp. 195–211.en
dc.referencesRobine J. M. (2006), Summarizing Health Status, [in:] D. Pencheon, C. Guest, D. Melzer, J. A.M. Gray (eds.), Oxford Handbook of Public Health Practice, 2nd ed., Oxford University Press, Oxford.en
dc.referencesVaart A. W. van der (1998), Asymptotic Statistics, Cambridge University Press, Cambridge.en
dc.referencesWróblewska W. (2008), Sumaryczne miary stanu zdrowia populacji, “Studia Demograficzne”, no. 1–2, pp. 153–154.en
dc.referencesYang Z. (2018), Unified M‑Estimation of Fixed‑Effects Spatial Dynamic Models with Short Panels, “Journal of Econometrics”, no. 205, pp. 423–447, http://doi.org/10.1016/j.jeconom.2017.08.019en
dc.contributor.authorEmailagnieszka.orwat@ue.katowice.pl
dc.identifier.doi10.18778/0208-6018.347.07
dc.relation.volume2


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by/4.0