Show simple item record

dc.contributor.authorGherardi, Guido
dc.contributor.authorOrlandelli, Eugenio
dc.date.accessioned2021-05-05T13:58:33Z
dc.date.available2021-05-05T13:58:33Z
dc.date.issued2021-01-20
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/35350
dc.description.abstractThis paper introduces the logics of super-strict implications, where a super-strict implication is a strengthening of C.I. Lewis' strict implication that avoids not only the paradoxes of material implication but also those of strict implication. The semantics of super-strict implications is obtained by strengthening the (normal) relational semantics for strict implication. We consider all logics of super-strict implications that are based on relational frames for modal logics in the modal cube. it is shown that all logics of super-strict implications are connexive logics in that they validate Aristotle's Theses and (weak) Boethius's Theses. A proof-theoretic characterisation of logics of super-strict implications is given by means of G3-style labelled calculi, and it is proved that the structural rules of inference are admissible in these calculi. It is also shown that validity in the S5-based logic of super-strict implications is equivalent to validity in G. Priest's negation-as-cancellation-based logic. Hence, we also give a cut-free calculus for Priest's logic.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;1en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectStrict implicationen
dc.subjectparadoxes of implicationen
dc.subjectconnexive implicationen
dc.subjectsequent calculien
dc.subjectstructural rulesen
dc.titleSuper-Strict Implicationsen
dc.typeOther
dc.page.number1-34
dc.contributor.authorAffiliationGherardi, Guido - University of Bologna, Department of Philosophy and Communication Studies I-40126, Via Zamboni 38, Bologna, Italyen
dc.contributor.authorAffiliationOrlandelli, Eugenio - University of Bologna, Department of Philosophy and Communication Studies I-40126, Via Zamboni 38, Bologna, Italyen
dc.identifier.eissn2449-836X
dc.references[1] A. R. Anderson, N. Belnap, Entailment. The Logic of Relevance and Necessity, vol. 1, Princeton University Press (1975).en
dc.references[2] R. George, Bolzano's consequence, relevance, and enthymemes, Journal of Philosophical Logic, vol. 12 (1983), pp. 299–318, DOI: https://doi.org/10.1007/BF00263480en
dc.references[3] J. Y. Halpern, Y. Moses, A Guide to Completeness and Complexity for Modal Logics of Knowledge and Belief, Artificial Intelligence, vol. 54(2) (1992), pp. 319–379, DOI: https://doi.org/10.1016/0004-3702(92)90049-4en
dc.references[4] J. Heylen, L. Horsten, Strict Conditionals: A Negative Result, The Philosophical Quarterly, vol. 56(225) (2006), pp. 536–549, DOI: https://doi.org/10.1111/j.1467-9213.2006.457.xen
dc.references[5] D. Hitchcock, Does the Traditional Treatment of Enthymemes Rest on a Mistake?, Argumentation, vol. 12 (1998), pp. 15–37, DOI: https://doi.org/10.1007/978-3-319-53562-3_5en
dc.references[6] C. I. Lewis, Survey of Symbolic Logic, University of California Press (1918).en
dc.references[7] D. Lewis, Counterfactuals, Harvard University Press (1975).en
dc.references[8] E. J. Lowe, A simplification of the logic of conditionals, Notre Dame Journal of Formal Logic, vol. 24(3) (1983), pp. 357–366, DOI: https://doi.org/10.1305/ndj/1093870380en
dc.references[9] E. J. Lowe, The Truth About Counterfactuals, The Philosophical Quarterly, vol. 45(178) (1995), pp. 41–59, DOI: https://doi.org/10.2307/2219847en
dc.references[10] S. Negri, Proof Theory for Non-normal Modal Logics: The Neighbourhood Formalism and Basic Results, IfCoLog Journal of Logic and its Applications, vol. 4 (2017), pp. 1241–1286.en
dc.references[11] S. Negri, E. Orlandelli, Proof theory for quantified monotone modal logics, Logic journal of the IGPL, vol. 27(4) (2019), p. 478–506, DOI: https://doi.org/10.1093/jigpal/jzz015en
dc.references[12] S. Negri, J. von Plato, Proof Analysis, Cambridge University Press (2011).en
dc.references[13] E. Nelson, Intensional relations, Mind, vol. 39 (1930), pp. 440–453.en
dc.references[14] H. Omori, H. Wansing, Connexive logics. An overview and current trends, Logic and Logical Philosophy, vol. 28(3) (2019), pp. 371–387, DOI: https://doi.org/10.12775/LLP.2019.026en
dc.references[15] C. Pizzi, T. Williamson, Strong Boethius' Thesis and Consequential Implication, Journal of Philosophical Logic, vol. 26 (1997), pp. 569–588, DOI: https://doi.org/10.1023/A:1004230028063en
dc.references16] G. Priest, Negation as cancellation and connexive logic, Topoi, vol. 18 (1999), pp. 141–148, DOI: https://doi.org/10.1023/A:1006294205280en
dc.references[17] E. Raidl, Strengthened Conditionals, [in:] B. Liao, Y. N. Wáng (eds.), Context, Conict and Reasoning, Springer Singapore (2020), pp. 139–155, DOI: https://doi.org/10.1007/978-981-15-7134-3_11en
dc.references[18] H. Rasiowa, An Algebraic Approach to Non-classical Logics, Elsevier (1974).en
dc.references[19] R. Routley, V. Routley, Negation and contradiction, Revista Colombiana de Matemáticas, vol. 19 (1985), pp. 201–230.en
dc.references[20] R. C. Stalnaker, A Theory of Conditionals, [in:] N. Rescher (ed.), Studies in Logical Theory, Basil Blackwell (1968), pp. 98–112.en
dc.references[21] A. S. Troelstra, D. van Dalen, Constructivism in Mathematics, North-Holland (1988).en
dc.references[22] M. Vidal, When Conditional Logic met Connexive Logic, [in:] IWCS 2017 - 12th International Conference on Computational Semantics (2017), pp. 1–11, URL: https://www.aclweb.org/anthology/W17-6816en
dc.references[23] H. Wansing, D. Skurt, Negation as Cancellation, Connexive Logic, and qLPm, The Australasian Journal of Logic, vol. 15 (2018), pp. 476–488, DOI: https://doi.org/10.26686/ajl.v15i2.4869en
dc.contributor.authorEmailGherardi, Guido - guido.gherardi@unibo.it
dc.contributor.authorEmailOrlandelli, Eugenio - eugenio.orlandelli@unibo.it
dc.identifier.doi10.18778/0138-0680.2021.02
dc.relation.volume50


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0