Pokaż uproszczony rekord

dc.contributor.authorBandaru, Ravikumar
dc.contributor.authorSaeid, Arsham Borumand
dc.contributor.authorJun, Young Bae
dc.date.accessioned2021-05-05T13:58:34Z
dc.date.available2021-05-05T13:58:34Z
dc.date.issued2020-08-30
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/35353
dc.description.abstractHilbert algebras are important tools for certain investigations in intuitionistic logic and other non-classical logic and as a generalization of Hilbert algebra a new algebraic structure, called a GE-algebra (generalized exchange algebra), is introduced and studied its properties. We consider filters, upper sets and congruence kernels in a GE-algebra. We also characterize congruence kernels of transitive GE-algebras.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;1en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subject(transitive) GE-algebraen
dc.subjectfilteren
dc.subjectupper seten
dc.subjectcongruence kernelen
dc.titleOn GE-algebrasen
dc.typeOther
dc.page.number81-96
dc.contributor.authorAffiliationBandaru, Ravikumar - GITAM (Deemed to be University), Department of Mathematics, Hyderabad Campus, Telangana-502329, Indiaen
dc.contributor.authorAffiliationSaeid, Arsham Borumand - Shahid Bahonar University of Kerman, Department of Pure Mathematics, Faculty of Mathematics and Computer, Kerman, Iranen
dc.contributor.authorAffiliationJun, Young Bae - Gyeongsang National University, Department of Mathematics Educations, Jinju 52828, Koreaen
dc.identifier.eissn2449-836X
dc.references[1] J. C. Abbott, Semi-boolean algebra, Matematički Vesnik, vol. 4(19) (1967), pp. 177–198.en
dc.references[2] R. A. Borzooei, S. Khosravi Shoar, Implication algebras are equivalent to the dual implicative BCK-algebras, Scientiae Mathematicae Japonicae, vol. 63(3) (2006), pp. 429–431.en
dc.references[3] R. A. Borzooei, J. Shohani, On generalized Hilbert algebras, Italian Journal of Pure and Applied Mathematics, vol. 29 (2012), pp. 71–86.en
dc.references[4] D. Buşneag, A note on deductive systems of a Hilbert algebra, Kobe Journal of Mathematics, vol. 2(1) (1985), pp. 29–35.en
dc.references[5] D. Buşneag, Categories of algebraic logic, Editura Academiei Romane (2006).en
dc.references[6] S. Celani, A note on homomorphisms of Hilbert algebras, International Journal of Mathematics and Mathematical Sciences, vol. 29(1) (2002), pp. 55–61, DOI: https://doi.org/10.1155/S0161171202011134en
dc.references[7] W. Y. C. Chen, J. S. Oliveira, Implication algebras and the Metropolis-Rota axioms for cubic lattices, Journal of Algebra, vol. 171(2) (1995), pp. 383–396, DOI: https://doi.org/10.1006/jabr.1995.1017en
dc.references[8] A. Diego, Sur les algèbres de Hilbert, Translated from the Spanish by Luisa Iturrioz. Collection de Logique Mathématique, Sér. A, Fasc. XXI, Gauthier-Villars, Paris; E. Nauwelaerts, Louvain (1966).en
dc.references[9] A. Figallo, Jr., A. Ziliani, Remarks on Hertz algebras and implicative semilattices, Bulletin of the Section of Logic, vol. 34(1) (2005), pp. 37–42.en
dc.references[10] A. V. Figallo, G. Z. Ramón, S. Saad, A note on the Hilbert algebras with infimum, Matemática Contemporânea, vol. 24 (2003), pp. 23–37, 8th Workshop on Logic, Language, Informations and Computation – WoLLIC'2001 (Brasília).en
dc.references[11] S. M. Hong, Y. B. Jun, On deductive systems of Hilbert algebras, Korean Mathematical Society. Communications, vol. 11(3) (1996), pp. 595–600.en
dc.references[11] Y. Imai, K. Iséki, On axiom systems of propositional calculi, XIV, Proceedings of the Japan Academy, vol. 42(1) (1966), pp. 19–22, DOI: https://doi.org/10.3792/pja/1195522169en
dc.references[13] Y. B. Jun, Commutative Hilbert algebras, Soochow Journal of Mathematics, vol. 22(4) (1996), pp. 477–484.en
dc.references[14] H. S. Kim, Y. H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae, vol. 66(1) (2007), pp. 113–116.en
dc.references[15] A. Monteiro, Lectures on Hilbert and Tarski Algebras, Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina (1960).en
dc.references[16] A. A. Monteiro, Sur les algèbres de Heyting symétriques, Portugaliae Mathematica, vol. 39(1–4) (1980), pp. 1–237 (1985), special issue in honor of António Monteiro.en
dc.contributor.authorEmailBandaru, Ravikumar - ravimaths83@gmail.com
dc.contributor.authorEmailSaeid, Arsham Borumand - arsham@uk.ac.ir
dc.contributor.authorEmailJun, Young Bae - skywine@gmail.com
dc.identifier.doi10.18778/0138-0680.2020.20
dc.relation.volume50


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0