dc.contributor.author | Chlebowski, Szymon | |
dc.contributor.author | Leszczyńska-Jasion, Dorota | |
dc.date.accessioned | 2021-05-05T15:51:48Z | |
dc.date.available | 2021-05-05T15:51:48Z | |
dc.date.issued | 2019-12-31 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/35365 | |
dc.description.abstract | We define Kripke semantics for propositional intuitionistic logic with Suszko’s identity (ISCI). We propose sequent calculus for ISCI along with cut-elimination theorem. We sketch a constructive interpretation of Suszko’s propositional identity connective. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;4 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | Non-Fregean logics | en |
dc.subject | intuitionistic logic | en |
dc.subject | admissibility of cut | en |
dc.subject | propositional identity | en |
dc.subject | congruence | en |
dc.title | An Investigation into Intuitionistic Logic with Identity | en |
dc.type | Other | |
dc.page.number | 259–283 | |
dc.contributor.authorAffiliation | Chlebowski, Szymon - Department of Logic and Cognitive Science, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznań, Poland | en |
dc.contributor.authorAffiliation | Leszczyńska-Jasion, Dorota - Department of Logic and Cognitive Science, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznań, Poland | en |
dc.identifier.eissn | 2449-836X | |
dc.references | [1] S. L. Bloom and R. Suszko, Investigations into the sentential calculus with identity, Notre Dame Journal of Formal Logic, Vol. 13, No. 3 (1972), pp. 289–308. http://dx.doi.org/10.1305/ndjfl/1093890617 | en |
dc.references | [2] J. G. Granström, Treatise on intuitionistic type theory, Springer Science & Business Media, Dordrecht, 2011. http://dx.doi.org/10.1007/978-94-007-1736-7 | en |
dc.references | [3]J. R. Hindley, Basic simple type theory, Cambridge University Press, Cambridge, 1997. https://doi.org/10.1017/CBO9780511608865 | en |
dc.references | [4] S. C. Kleene, Introduction to Metamathematics, Amsterdam: North-Holland Publishing Co.; Groningen: P. Noordhoff N.V., 1952. | en |
dc.references | [5] P. Łukowski, Intuitionistic sentential calculus with identity, Bulletin of the Section of Logic, Vol. 19, No. 3 (1990), pp. 92–99. | en |
dc.references | [6] S. Negri and J. von Plato, Cut elimination in the presence of axioms, Bulletin of Symbolic Logic, Vol. 4, No. 04 (1998), pp. 418–435. https://doi.org/10.2307/420956 | en |
dc.references | [7] S. Negri and J. von Plato, Structural Proof Theory, Cambridge University Press, Cambridge, 2001. https://doi.org/10.1017/CBO9780511527340 | en |
dc.references | [8] S. Negri and J. von Plato, Proof Analysis: a Contribution to Hilbert’s Last Problem, Cambridge University Press, Cambridge, 2011. | en |
dc.references | [9] S. Negri, J. von Plato, and T. Coquand, Proof-theoretical analysis of order relations, Archive for Mathematical Logic, Vol. 43, No. 3 (2004), pp. 297–309. https://doi.org/10.1007/s00153-003-0209-8 | en |
dc.references | [10] R. Suszko, Abolition of the Fregean axiom, [in:] R. Parikh (ed.), Logic Colloquium, pp. 169–239, Berlin, Heidelberg, 1975, Springer. https://doi.org/10.1007/BFb0064874 | en |
dc.references | [11] A. S. Troelstra and H. Schwichtenberg, Basic Proof Theory, Camridge University Press, Cambridge, second edition, 2000. https://doi.org/10.1017/CBO9781139168717 | en |
dc.references | [12] L. Viganò, Labelled non-classical logics, Kluwer Academic Publishers, Boston, 2000. https://doi.org/10.1007/978-1-4757-3208-5 | en |
dc.contributor.authorEmail | Chlebowski, Szymon - szymon.chlebowski@amu.edu.pl | |
dc.contributor.authorEmail | Leszczyńska-Jasion, Dorota - dorota.leszczynska@amu.edu.pl | |
dc.identifier.doi | 10.18778/0138-0680.48.4.02 | |
dc.relation.volume | 48 | |