Show simple item record

dc.contributor.authorNowak, Marek
dc.date.accessioned2021-05-05T15:51:49Z
dc.date.available2021-05-05T15:51:49Z
dc.date.issued2019-12-31
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/35368
dc.description.abstractThe concept of multiple-conclusion consequence relation from [8] and [7] is considered. The closure operation C assigning to any binary relation r (dened on the power set of a set of all formulas of a given language) the least multiple-conclusion consequence relation containing r, is dened on the grounds of a natural Galois connection. It is shown that the very closure C is an isomorphism from the power set algebra of a simple binary relation to the Boolean algebra of all multiple-conclusion consequence relations.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;4en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectmultiple-conclusion consequence relationen
dc.subjectclosure operationen
dc.subjectGalois connectionen
dc.titleDisjunctive Multiple-Conclusion Consequence Relationsen
dc.typeOther
dc.page.number319–328
dc.contributor.authorAffiliationDepartment of Logic and Methodology of Science, University of Lodz, Polanden
dc.identifier.eissn2449-836X
dc.references[1] T. S. Blyth, Lattices and Ordered Algebraic Structures, Springer, 2005. https://doi.org/10.1007/b139095en
dc.references[2] K. Denecke, M. Erné, S. L. Wismath (eds.), Galois Connections and Applications, Kluwer, 2004. https://doi.org/10.1007/978-1-4020-1898-5en
dc.references[3] F. Domenach, B. Leclerc, Biclosed binary relations and Galois connections, Order, Vol. 18 (2001), pp. 89–104. https://doi.org/10.1023/A:1010662327346en
dc.references[4] M. Erné, J. Koslowski, A. Melton, G. E. Strecker, A Primer on Galois Connections, Annals of the New York Academy of Sciences, Vol. 704 (1993), pp. 103–125. https://doi.org/10.1111/j.1749-6632.1993.tb52513.xen
dc.references[5] G. K. E. Gentzen, Untersuchungen über das logische Schließen. I, Mathematische Zeitschrift, Vol. 39 (1934), pp. 176–210, [English translation: Investigation into Logical Deduction, [in:] M. E. Szabo, The collected Works of Gerhard Gentzen, North Holland, 1969, pp. 68–131.] https://doi.org/10.1007/BF01201353en
dc.references[6] G. Payette, P. K. Schotch, Remarks on the Scott-Lindenbaum Theorem, Studia Logica, Vol. 102 (2014), pp. 1003–1020. https://doi.org/10.1007/s11225-013-9519-yen
dc.references[7] D. Scott, Completeness and axiomatizability in many-valued logic, Proceedings of Symposia in Pure Mathematics, Vol. 25 (Proceedings of the Tarski Symposium), American Mathematical Society 1974, pp. 411–435.en
dc.references[8] D. J. Shoesmith, T. J. Smiley, Multiple-conclusion Logic, Cambridge 1978. https://doi.org/10.1017/CBO9780511565687en
dc.references[9] T. Skura, A. Wiśniewski, A system for proper multiple-conclusion entailment, Logic and Logical Philosophy, Vol. 24 (2015), pp. 241–253. http://dx.doi.org/10.12775/LLP.2015.001en
dc.references[10] R. Wójcicki, Dual counterparts of consequence operations, Bulletin of the Section of Logic, Vol. 2 (1973), pp. 54–56.en
dc.references[11] J. Zygmunt, An Essay in Matrix Semantics for Consequence Relations, Wydawnictwo Uniwersytetu Wrocławskiego, 1984.en
dc.contributor.authorEmailmarek.nowak@filozof.uni.lodz.pl
dc.identifier.doi10.18778/0138-0680.48.4.05
dc.relation.volume48


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0