dc.contributor.author | Aranda, Víctor | |
dc.date.accessioned | 2021-05-11T06:25:08Z | |
dc.date.available | 2021-05-11T06:25:08Z | |
dc.date.issued | 2020-06-30 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/35467 | |
dc.description.abstract | Husserl's two notions of "definiteness" enabled him to clarify the problem of imaginary numbers. The exact meaning of these notions is a topic of much controversy. A "definite" axiom system has been interpreted as a syntactically complete theory, and also as a categorical one. I discuss whether and how far these readings manage to capture Husserl's goal of elucidating the problem of imaginary numbers, raising objections to both positions. Then, I suggest an interpretation of "absolute definiteness" as semantic completeness and argue that this notion does not suffice to explain Husserl's solution to the problem of imaginary numbers. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;2 | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | Husserl | en |
dc.subject | completeness | en |
dc.subject | categoricity | en |
dc.subject | relative and absolute definiteness | en |
dc.subject | imaginary numbers | en |
dc.title | Completeness, Categoricity and Imaginary Numbers: The Debate on Husserl | en |
dc.type | Other | |
dc.page.number | 109–125 | |
dc.contributor.authorAffiliation | Universidad Autónoma de Madrid, Departamento de Lingüística General, Lenguas Modernas, Lógica y Filosofía de la Ciencia | en |
dc.identifier.eissn | 2449-836X | |
dc.references | [1] S. Awodey, E. Reck, Completeness and Categoricity. Part I, History and Philosophy of Logic, vol. 23 (2002), pp. 1–30. | en |
dc.references | [2] R. Carnap, Untersuchungen zur allgemeinen Axiomatik, Wissenschaftliche Buchgesellschaft, Darmstadt (2000). | en |
dc.references | [3] S. Centrone, Logic and philosophy of mathematics in the early Husserl, Springer, Dordrecht (2010). | en |
dc.references | [4] J. J. Da Silva, Husserl's two notions of completeness, Synthese, vol. 125 (2000), pp. 417–438. | en |
dc.references | [5] J. J. Da Silva, Husserl and Hilbert on completeness, still, Synthese, vol. 193 (2016), pp. 1925–1947. | en |
dc.references | [6] A. Fraenkel, Einleitung in die Megenlehre (3rd edition), Springer, Berlin (1928). | en |
dc.references | [7] H. Hankel, Theorie der complexen Zahlensysteme (vol. 1), Leopold Voss, Leipzig (1867). | en |
dc.references | [8] M. Hartimo, Towards completeness: Husserl on theories of manifolds 1890–1901, Synthese, vol. 156 (2007), pp. 281–310. | en |
dc.references | [9] M. Hartimo, Husserl on completeness, definitely, Synthese, vol. 195 (2018), pp. 1509–1527. | en |
dc.references | [10] C. O. Hill, Husserl and Hilbert on completeness, From Dedekind to Gödel, Springer (1995), pp. 143–163. | en |
dc.references | [11] W. Hodges, Truth in a structure, Proceedings of the Aristotelian Society, vol. 86 (1986), pp. 135–151. | en |
dc.references | `2] [12] W. Hodges, Model Theory, Cambridge University Press, Cambridge (1993). | en |
dc.references | [13] E. Husserl, Formal and Trascendental Logic, Springer+Bussiness Media, Dordrecht (1969). | en |
dc.references | [14] E. Husserl, Philosophy of Arithmetic, Kluwer Academic Publishers, Dordrecht (2003). | en |
dc.references | [15] A. Lindenbaum and A. Tarski, On the limitations of the means of expression of deductive theories, Logic, semantics, metamathematics, Hackett, Indianapolis (1983), pp. 384–392. | en |
dc.references | [16] L. Löwenheim, On possibilities in the calculus of relatives, From Frege to Gödel, Harvard University Press, Harvard (1967), pp. 228–251. | en |
dc.references | [17] U. Majer, Husserl and Hilbert on completeness, Synthese, vol. 110 (1997), pp. 37–56. | en |
dc.references | [18] P. Mancosu, The Adventure of Reason, Oxford University Press, Oxford (2010). | en |
dc.references | [19] M. Manzano, Extensions of First Order Logic, Cambridge University Press, Cambridge (1996). | en |
dc.references | [20] M. Manzano, Model Theory, Oxford University Press, Oxford (1999). | en |
dc.references | [21] A. Tarski, On the concept of logical consequence, Logic, semantics, metamathematics, Hackett, Indianapolis (1983), pp. 409–420. | en |
dc.references | [22] A. Tarski, On the completeness and categoricity of deductive systems, The Adventure of Reason, Oxford University Press, Oxford (2010), pp. 485–492. | en |
dc.references | [23] N. Tennant, Deductive versus expressive power: A pre-Gödelian predicament, The Journal of Philosophy, vol. 97 (2000), pp. 257–277. | en |
dc.contributor.authorEmail | victor.aranda@uam.es | |
dc.identifier.doi | 10.18778/0138-0680.2020.07 | |
dc.relation.volume | 49 | |