Pokaż uproszczony rekord

dc.contributor.authorAranda, Víctor
dc.date.accessioned2021-05-11T06:25:08Z
dc.date.available2021-05-11T06:25:08Z
dc.date.issued2020-06-30
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/35467
dc.description.abstractHusserl's two notions of "definiteness" enabled him to clarify the problem of imaginary numbers. The exact meaning of these notions is a topic of much controversy. A "definite" axiom system has been interpreted as a syntactically complete theory, and also as a categorical one. I discuss whether and how far these readings manage to capture Husserl's goal of elucidating the problem of imaginary numbers, raising objections to both positions. Then, I suggest an interpretation of "absolute definiteness" as semantic completeness and argue that this notion does not suffice to explain Husserl's solution to the problem of imaginary numbers.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;2en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectHusserlen
dc.subjectcompletenessen
dc.subjectcategoricityen
dc.subjectrelative and absolute definitenessen
dc.subjectimaginary numbersen
dc.titleCompleteness, Categoricity and Imaginary Numbers: The Debate on Husserlen
dc.typeOther
dc.page.number109–125
dc.contributor.authorAffiliationUniversidad Autónoma de Madrid, Departamento de Lingüística General, Lenguas Modernas, Lógica y Filosofía de la Cienciaen
dc.identifier.eissn2449-836X
dc.references[1] S. Awodey, E. Reck, Completeness and Categoricity. Part I, History and Philosophy of Logic, vol. 23 (2002), pp. 1–30.en
dc.references[2] R. Carnap, Untersuchungen zur allgemeinen Axiomatik, Wissenschaftliche Buchgesellschaft, Darmstadt (2000).en
dc.references[3] S. Centrone, Logic and philosophy of mathematics in the early Husserl, Springer, Dordrecht (2010).en
dc.references[4] J. J. Da Silva, Husserl's two notions of completeness, Synthese, vol. 125 (2000), pp. 417–438.en
dc.references[5] J. J. Da Silva, Husserl and Hilbert on completeness, still, Synthese, vol. 193 (2016), pp. 1925–1947.en
dc.references[6] A. Fraenkel, Einleitung in die Megenlehre (3rd edition), Springer, Berlin (1928).en
dc.references[7] H. Hankel, Theorie der complexen Zahlensysteme (vol. 1), Leopold Voss, Leipzig (1867).en
dc.references[8] M. Hartimo, Towards completeness: Husserl on theories of manifolds 1890–1901, Synthese, vol. 156 (2007), pp. 281–310.en
dc.references[9] M. Hartimo, Husserl on completeness, definitely, Synthese, vol. 195 (2018), pp. 1509–1527.en
dc.references[10] C. O. Hill, Husserl and Hilbert on completeness, From Dedekind to Gödel, Springer (1995), pp. 143–163.en
dc.references[11] W. Hodges, Truth in a structure, Proceedings of the Aristotelian Society, vol. 86 (1986), pp. 135–151.en
dc.references`2] [12] W. Hodges, Model Theory, Cambridge University Press, Cambridge (1993).en
dc.references[13] E. Husserl, Formal and Trascendental Logic, Springer+Bussiness Media, Dordrecht (1969).en
dc.references[14] E. Husserl, Philosophy of Arithmetic, Kluwer Academic Publishers, Dordrecht (2003).en
dc.references[15] A. Lindenbaum and A. Tarski, On the limitations of the means of expression of deductive theories, Logic, semantics, metamathematics, Hackett, Indianapolis (1983), pp. 384–392.en
dc.references[16] L. Löwenheim, On possibilities in the calculus of relatives, From Frege to Gödel, Harvard University Press, Harvard (1967), pp. 228–251.en
dc.references[17] U. Majer, Husserl and Hilbert on completeness, Synthese, vol. 110 (1997), pp. 37–56.en
dc.references[18] P. Mancosu, The Adventure of Reason, Oxford University Press, Oxford (2010).en
dc.references[19] M. Manzano, Extensions of First Order Logic, Cambridge University Press, Cambridge (1996).en
dc.references[20] M. Manzano, Model Theory, Oxford University Press, Oxford (1999).en
dc.references[21] A. Tarski, On the concept of logical consequence, Logic, semantics, metamathematics, Hackett, Indianapolis (1983), pp. 409–420.en
dc.references[22] A. Tarski, On the completeness and categoricity of deductive systems, The Adventure of Reason, Oxford University Press, Oxford (2010), pp. 485–492.en
dc.references[23] N. Tennant, Deductive versus expressive power: A pre-Gödelian predicament, The Journal of Philosophy, vol. 97 (2000), pp. 257–277.en
dc.contributor.authorEmailvictor.aranda@uam.es
dc.identifier.doi10.18778/0138-0680.2020.07
dc.relation.volume49


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

http://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako http://creativecommons.org/licenses/by-nc-nd/4.0