Show simple item record

dc.contributor.authorTarach, Piotr
dc.date.accessioned2021-09-30T17:13:07Z
dc.date.available2021-09-30T17:13:07Z
dc.date.issued2021-09-29
dc.identifier.issn1730-2366
dc.identifier.urihttp://hdl.handle.net/11089/39292
dc.description.abstractPolymerase chain reaction-restriction fragment length polymorphism (RFLP-PCR) is a technique used to identify single nucleotide polymorphisms (SNPs) based on the recognition of restriction sites by restriction enzymes. RFLP-PCR is an easy-to-perform and inexpensive tool for initial analysis of SNPs potentially associated with some monogenic diseases, as well as in genotyping, genetic mapping, lineage screening, forensics and ancient DNA analysis. The RFLP-PCR method employs four steps: (1) isolation of genetic material and PCR; (2) restriction digestion of amplicons; (3) electrophoresis of digested fragments; and (4) visualisation. Despite its obsolescence and the presence of high-throughput DNA analysis techniques, it is still applied in the analysis of SNPs associated with disease entities and in the analysis of genetic variation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RFLP-PCR is a low-cost and low-throughput research method allowing for the analysis of SNPs in the absence of specialised equipment, and it is useful when there is a limited budget.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Biologica et Oecologicaen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectnucleotide polymorphismsen
dc.subjectDNA analysisen
dc.subjectpolymerase chain reactionen
dc.titleApplication of polymerase chain reaction-restriction fragment length polymorphism (RFLP-PCR) in the analysis of single nucleotide polymorphisms (SNPs)en
dc.typeArticle
dc.page.number48-53
dc.contributor.authorAffiliationUniversity of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, 90-236 Lodz, Polanden
dc.identifier.eissn2083-8484
dc.referencesAlavian, S.E., Sharafi, H., Shirmast, P., Alavian, S. M., Behnava, B., Pouryasin, M., Keshvari, M., Pouryasin, A. 2018. A facile PCR-RFLP method for genotyping of ITPA rs1127354 and rs7270101 polymorphisms. Journal of Clinical Laboratory Analysis, 32: e22440.en
dc.referencesBackfisch, W., Neuenschwander, S., Giger, U., Stranzinger, G., Pliška, V. 1994. Carrier detection of ovine hemophilia a using an RFLP marker, and mapping of the factor VIII gene on the ovine X-chromosome. Journal of Heredity, 85: 474–478.en
dc.referencesBerg Rasmussen, H. 2012. Restriction fragment length polymorphism analysis of PCR-ampli-restriction fragment length polymorphism afied fragments (PCR-RFLP) and gel electrophoresis – valuable tool for genotyping and genetic fingerprinting. In: Magdeldin, S. (ed.) Gel Electrophoresis – Principles and Basics, InTech, London.en
dc.referencesBhattacharyya, C., Das, C., Ghosh, A., Singh, A., Mukherjee, S., Majumder, P., Basu, A., Biswas, N. 2020. Global spread of SARS-CoV-2 subtype with spike protein mutation D614G is shaped by human genomic variations that regulate expression of TMPRSS2 and MX1 genes. bioRxiv, 2020.05.04.075911.en
dc.referencesBudowle, B., Chakraborty, R., Giusti, A.M., Eisenberg, A.J., Allen, R.C. 1991. Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE. American Journal of Human Genetics, 48: 137–144.en
dc.referencesCatamo, E., Zupin, L., Segat, L., Celsi, F., Crovella, S. 2015. HLA-G and susceptibility to develop celiac disease. Human Immunology, 76: 36–41.en
dc.referencesChang, H.W., Cheng, Y.H., Chuang, L.Y., Yang, C.H. 2010. SNP-RFLPing 2: an updated and integrated PCR-RFLP tool for SNP genotyping. BMC Bioinformatics, 11: 173.en
dc.referencesChang, H.W., Yang, C.H., Chang, P.L., Cheng, Y.H., Chuang, L.Y. 2006. SNP-RFLPing: restriction enzyme mining for SNPs in genomes. BMC Genomics, 7: 30.en
dc.referencesEndreffy, E., Várkonyi, Á., Kaiser, G.I., Raskó, I. 1992. Association of altered RFLP with coeliac disease among Hungarian families. Journal of Pediatric Gastroenterology and Nutrition, 14: 118–119.en
dc.referencesHagelberg, E., Hofreiter, M., Keyser, C. 2015. Ancient DNA: the first three decades. Philosophical Transaction of the Royal Society B: Biological Sciences, 370: 20130371.en
dc.referencesHarding, D. 2007. Impact of common genetic variation on neonatal disease and outcome. Archives of Disease in Childhood. Fetal and Neonatal Edition, 92: F408–F413.en
dc.referencesHashemi, S.A., Khoshi, A., Ghasemzadeh-Moghaddam, H., Ghafouri, M., Taghavi, M., Namdar-Ahmadabad, H., Azimian, A. 2020. Development of a PCR-RFLP method for detection of D614G mutation in SARS-CoV-2. Infection, Genetics and Evolution, 86: 104625.en
dc.referencesHerrmann, F.H., Wehnert, M., Wulff, K. 2008. RFLP analysis for diagnosis of haemophilia A in the German Democratic Republic. Clinical Genetics, 37: 12–17.en
dc.referencesKozák, L., Kuhrová, V., Blažková, M., Fajkusová, L., Dvořáková, D., Romano, V., Pijáčková, A. 1995. Phenylketonuria mutations and their relation to RFLP haplotypes at the PAH locus in Czech PKU families. Human Genetics, 96: 472–476.en
dc.referencesKřepelová, A., Brdicka, R., Vorlová, Z. 1993. Factor VIII gene mutations and RFLP analysis in hemophilia A. Stem Cells, 11: 72–76.en
dc.referencesLaber, T.L., Giese, S.A., Iverson, J.T., Liberty, J.A. 1994. Validation studies on the forensic analysis of restriction fragment length polymorphism (RFLP) on LE agarose gels without ethidium bromide: effects of contaminants, sunlight, and the electrophoresis of varying quantities of deoxyribonucleic acid (DNA). Journal of Forensic Sciences, 39: 13649J.en
dc.referencesMeijer, H., Jongbloed, R.J.E., Hekking, M., Spaapen, L.J.M., Geraedts, J.P.M. 1993. RFLP haplotyping and mutation analysis of the phenylalanine hydroxylase gene in Dutch phenylketonuria families. Human Genetics, 92: 588–592.en
dc.referencesOrlando, L., Allaby, R., Skoglund, P., Sarkissian, C. Der, Stockhammer, P.W., Ávila-Arcos, M.C., Fu, Q., Krause, J., Willerslev, E., Stone, A.C., Warinner, C. 2021. Ancient DNA analysis. Nature Reviews Methods Primers 1: 1–26.en
dc.referencesPingoud, A., Jeltsch, A. 2001. Structure and function of type II restriction endonucleases. Nucleic Acids Research, 29: 3705–3727.en
dc.referencesPlante, J.A., Liu, Y., Liu, J., Xia, H., Johnson, B.A., Lokugamage, K.G., Zhang, X., Muruato, A.E., Zou, J., Fontes-Garfias, C.R., Mirchandani, D., Scharton, D., Bilello, J.P., Ku, Z., An, Z., Kalveram, B., Freiberg, A.N., Menachery, V.D., Xie, X., Plante, K.S., Weaver, S.C., Shi, P.Y. 2020. Spike mutation D614G alters SARS-CoV-2 fitness. Nature, 592: 116–121.en
dc.referencesPramoonjago, P., Harahap, A., Taufani, R.A., Setianingsih, I., Marzuki, S. 1999. Rapid screening for the most common β thalassaemia mutations in south east Asia by PCR based restriction fragment length polymorphism analysis (PCR-RFLP). Journal of Medical Genetics, 36: 937–938.en
dc.referencesSaiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A., Arnheim, N. 1985. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230: 1350–1354.en
dc.referencesStankovic, M., Rakicevic, L., Mikovic, D., Jankovic, G., Nikolic, A. 2005. Indirect diagnosis of haemophilia B by multiplex PCR/RFLP. Clinical & Laboratory Haematoology, 27: 145–146.en
dc.referencesTasleem Raza, S., Husain, N., Kumar, A. 2009. Screening for hemophilia A carriers: Uutility of PCR-RFLP-based polymorphism analysis. Clinical and Applied Thrombosis, 15: 78–83.en
dc.referencesZhou, B., Thi Nhu Thao, T., Hoffmann, D., Taddeo, A., Ebert, N., Labroussaa, F., Pohlmann, A., King, J., Steiner, S., Kelly, J.N., Portmann, J., Halwe, N.J., Ulrich, L., Trüeb, B.S., Fan, X., Hoffmann, B., Wang, L., Thomann, L., Lin, X., Stalder, H., Pozzi, B., Brot, S. de, Jiang, N., Cui, D., Hossain, J., Wilson, M., Keller, M., Stark, T.J., Barnes, J.R., Dijkman, R., Jores, J., Benarafa, C., Wentworth, D.E., Thiel, V., Beer, M. 2021. SARS-CoV-2 spike D614G change enhances replication and transmission. Nature, 592: 122–127.en
dc.contributor.authorEmailpiotr.tarach@biol.uni.lodz.pl
dc.identifier.doi10.18778/1730-2366.16.14
dc.relation.volume17


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0