dc.contributor.author | Gronkowska, Karolina | |
dc.date.accessioned | 2021-09-30T17:13:10Z | |
dc.date.available | 2021-09-30T17:13:10Z | |
dc.date.issued | 2021-09-29 | |
dc.identifier.issn | 1730-2366 | |
dc.identifier.uri | http://hdl.handle.net/11089/39300 | |
dc.description.abstract | Although preeclampsia affects approximately 3%–8% of pregnancies worldwide and is a major contributor to maternal and neonatal mortality and morbidity, the aetiology of preeclampsia is still not fully understood. This review presents the current knowledge on the aetiology of preeclampsia, with a special emphasis on risk factors and their role, and describes recommendations for the prevention and treatment of preeclampsia. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Acta Universitatis Lodziensis. Folia Biologica et Oecologica | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | proteinuria | en |
dc.subject | gestational hypertension | en |
dc.subject | trophoblast invasion | en |
dc.subject | uteroplacental malperfusion | en |
dc.subject | endothelial dysfunction | en |
dc.title | Aetiology, prophylaxis and management of preeclampsia | en |
dc.type | Article | |
dc.page.number | 111-121 | |
dc.contributor.authorAffiliation | University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, 90-236 Lodz, Poland | en |
dc.identifier.eissn | 2083-8484 | |
dc.references | Alcala, M., Gutierrez-Vag, S., Castor, E., Guzman-Gutiérrez, E., Ramos-Álvarez, M., Vian, M. 2018. Antioxidants and oxidative stress: focus in obese pregnancies. Frontiers in Physiology, 9: 1569. | en |
dc.references | Amaral, L.M., Wallace, K., Owens, M., LaMarca, B. 2017. Pathophysiology and Current clinical management of preeclampsia. Current Hypertension Reports, 19(8): 61. | en |
dc.references | Aouache, R., Biquard, L., Vaiman, D., Miralles, F. 2018. Oxidative stress in preeclampsia and placental diseases. International Journal of Molecular Sciences, 19(5): 1496. | en |
dc.references | Benschop, L., Duvekot, J.J., Roeters van Lennep, J.E. 2019. Future risk of cardiovascular disease risk factors and events in women after a hypertensive disorder of pregnancy. Heart, 105(16): 1273–1278. | en |
dc.references | Braunthal, S., Brateanu, A. 2019. Hypertension in pregnancy: pathophysiology and treatment. SAGE Open Medicine, 7: 2050312119843700. | en |
dc.references | Brown, M.A., Magee, L.A., Kenny, L.C., Karumanchi, S.A., McCarthy, F.P., Saito, S., Hall, D.R., Warren, C.E., Adoyi, G., Ishaku, S. 2018. Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension, 72(1): 24–43. | en |
dc.references | Cornelius, D.C. 2018. Preeclampsia: from inflammation to immunoregulation. Clinical Medicine Insights: Blood Disorders, 11: 1179545X17752325 | en |
dc.references | Cunningham, M.W.Jr., Vaka, V.R., McMaster K., Ibrahim, T., Cornelius D.C., Amaral L., Campbell N., Wallukat, G., McDuffy, S., Usry, N., Dechend, R., LaMarca, B. 2019. Renal natural killer cell activation and mitochondrial oxidative stress; new mechanisms in AT1-AA mediated hypertensive pregnancy. Pregnancy Hypertension, 15: 72–77. | en |
dc.references | Fox, R., Kitt, J., Leeson, P., Aye, C.Y.L., Lewandowski, A.J. 2019. Preeclampsia: risk factors, diagnosis, management, and the cardiovascular impact on the offspring. Journal of Clinical Medicine, 8(10): 1625. | en |
dc.references | Geldenhuys, J., Rossouw, T.M., Lombaard, H.A., Ehlers, M.M., Kock, M.M. 2018. Disruption in the regulation of immune responses in the placental subtype of preeclampsia. Frontiers in Immunology, 9: 1659. | en |
dc.references | Gobert, M. and Lafaille, J.J. 2012. Maternal-fetal immune tolerance, block by block. Cell, 150(1): 7–9. | en |
dc.references | Godo, S., Shimokawa, H. 2017. Endothelial Functions. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(9): e108–e114. | en |
dc.references | Jabrane-Ferrat, N., Siewiera, J. 2014. The up side of decidual natural killer cells: new developments in immunology of pregnancy. Immunology, 141(4): 490–497. | en |
dc.references | Kenny, L.C., Kell, D.B. 2017. Immunological tolerance, pregnancy, and preeclampsia: the roles of semen microbes and the father. Frontiers in Medicine, 4: 239. | en |
dc.references | Kim, J.-Y., Kim, Y.M. 2015. Acute atherosis of the uterine spiral arteries: clinicopathologic implycations. Journal of Pathology and Translational Medicine, 49(6): 462–471. | en |
dc.references | Lam, M.T.C., Dierking, E. 2017. Intensive Care Unit issues in eclampsia and HELLP syndrome. International Journal of Critical Illness and Injury Science, 7(3): 136–141. | en |
dc.references | Li, J., LaMarca, B., Reckelhoff, J.F. 2012. A model of preeclampsia in rats: the reduced uterine perfusion pressure (RUPP) model. American Journal of Physiology Heart and Circulatory Physiology, 303(1): H1–H8. | en |
dc.references | Li, Y., Yan, J., Chang, H.-M., Chen, Z.-J., Leung, C.K. 2021. Roles of TGF-β superfamily proteins in extravillous trophoblast invasion. Trends in Endocrinology and Metabolism, 32(3): 170–189. | en |
dc.references | Lu, H.-Q., Hu, R. 2019. The role of immunity in the pathogenesis and development of pre-eclampsia. Scandinavian Journal of Immunology, 90(5): e12756. | en |
dc.references | Manna, S., McCarthy, C., McCarthy, F.P. 2019. Placental ageing in adverse pregnancy outcomes: telomere shortening, cell senescence, and mitochondrial dysfunction. Oxidative Medicine and Cellular Longevity, 2019: 3095383. | en |
dc.references | Mannaerts, D., Faes, E., Cos, P., Briedé, J.J., Gyselaers, W., Cornette, J., Gorbanev, Y., Bogaerts, A., Spaanderman, M., Craenenbroeck, E., Jacquemyn, Y. 2018. Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status and vascular function. PloS One, 13(9): e0202919. | en |
dc.references | Mayrink, J., Costa, M.L., Cecatti, J.G. 2018. Preeclampsia in 2018: revisiting concepts, physiopathology, and prediction. The Scientific World Journal, 2018: 6268276. | en |
dc.references | Staff, A.C. 2019. The two-stage placental model of preeclampsia: an update. Journal of Reproductive Immunology, 134–135: 1–10. | en |
dc.references | Taravati, A., Tohidi, F. 2018. Comprehensive analysis of oxidative stress markers and antioxidants status in preeclampsia. Taiwanese Journal of Obstetrics & Gynecology, 57(6): 779–790. | en |
dc.references | Tomimatsu, T., Mimura, K., Matsuzaki, S., Endo, M., Kumasawa, K., Kimura, T. 2019. Preeclampsia: maternal systemic vascular disorder caused by generalized endothelial dysfunction due to placental antiangiogenic factors. International Journal of Molecular Sciences, 20(17): 4246. | en |
dc.references | Tong, W., Giussani, D.A. 2019. Preeclampsia link to gestational hypoxia. Journal of Developmental Origins of Health and Disease, 10(3): 322–333. | en |
dc.references | Turbeville, H.R., Sasser, J.M. 2020. Preeclampsia beyond pregnancy: long-term consequences for mother and child. American Journal of Physiology-Renal Physiology, 318(6): F1315–F1326. | en |
dc.contributor.authorEmail | karolina.gronkowska@unilodz.eu | |
dc.identifier.doi | 10.18778/1730-2366.16.22 | |
dc.relation.volume | 17 | |