Pokaż uproszczony rekord

dc.contributor.authorSayed Ahmed, Tarek
dc.date.accessioned2021-11-05T10:31:55Z
dc.date.available2021-11-05T10:31:55Z
dc.date.issued2021-05-28
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/39683
dc.description.abstractFix \(2 < n < \omega\). Let \(L_n\) denote first order logic restricted to the first n variables. Using the machinery of algebraic logic, positive and negative results on omitting types are obtained for \(L_n\) and for infinitary variants and extensions of \(L_{\omega, \omega}\).en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;3en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectAlgebraic logicen
dc.subjectmultimodal logicen
dc.subjectomitting typesen
dc.subjectcompletionsen
dc.titleOmitting Types in Fragments and Extensions of First Order Logicen
dc.typeOther
dc.page.number249-287
dc.contributor.authorAffiliationCairo University, Department of Mathematics, Faculty of Scienceen
dc.identifier.eissn2449-836X
dc.references[1] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, vol. 22 of Bolyai Society Mathematical Studies, Springer Verlag (2013), DOI: https://doi.org/10.1007/978-3-642-35025-2en
dc.references[2]H. Andréka, I. Németi, T. Sayed Ahmed, Omitting types for finite variable fragments and complete representations of algebras, Journal of Symbolic Logic, vol. 73(1) (2008), pp. 65–89, DOI: https://doi.org/10.2178/jsl/1208358743en
dc.references[3] B. Biró, Non-finite-axiomatizability results in algebraic logic, Journal of Symbolic Logic, vol. 57(3) (1992), pp. 832–843, DOI: https://doi.org/10.2307/2275434en
dc.references[4] P. Blackburn, M. d. Rijke, Y. Venema, Modal Logic, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press (2001), DOI: https://doi.org/10.1017/CBO9781107050884en
dc.references[5] J. Bulian, I. Hodkinson, Bare canonicity of representable cylindric and polyadic algebras, Annals of Pure and Applied Logic, vol. 164(9) (2013), pp. 884–906, DOI: https://doi.org/10.1016/j.apal.2013.04.002en
dc.references[6] A. Daigneault, J. Monk, Representation Theory for Polyadic algebras, Fundamenta Mathematicae, vol. 52 (1963), pp. 151–176, DOI: https://doi.org/10.4064/fm-52-2-151-176en
dc.references[7] P. Erdös, Graph Theory and Probability, Canadian Journal of Mathematics, vol. 11 (1959), pp. 34–38, DOI: https://doi.org/10.4153/CJM-1959-003-9en
dc.references[8] M. Ferenczi, A new representation theory: Representing cylindric-like algebras by relativized set algebras, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, vol. 22 of Bolyai Society Mathematical Studies, Springer Verlag (2013), pp. 135–162, DOI: https://doi.org/10.1007/978-3-642-35025-2_7en
dc.references[9] D. H. Fremlin, Consequences of Martin’s Axiom, Cambridge Tracts in Mathematics, Cambridge University Press (1984), DOI: https://doi.org/10.1017/CBO9780511896972en
dc.references[10] L. Henkin, J. D. Monk, A. Tarski, L. Henkin, J. D. Monk, A. Tarski, Cylindric Algebras. Part I, Journal of Symbolic Logic, vol. 50(1) (1985), pp. 234–237, DOI: https://doi.org/10.2307/2273803en
dc.references[11] R. Hirsch, I. Hodkinson, Complete representations in algebraic logic, Journal of Symbolic Logic, vol. 62(3) (1997), pp. 816–847, DOI: https://doi.org/10.2307/2275574en
dc.references[12] R. Hirsch, I. Hodkinson (eds.), Relation algebras by games, vol. 147 of Studies in Logic and the Foundations of Mathematics, Elsevier Science, Amsterdam (2002).en
dc.references[13] R. Hirsch, I. Hodkinson, Completions and complete representations, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, vol. 22 of Bolyai Society Mathematical Studies, Springer Verlag (2013), pp. 61–90, DOI: https://doi.org/10.1007/978-3-642-35025-2_4en
dc.references[14] R. Hirsch, I. Hodkinson, A. Kurucz, On modal logics between K × K × K and S5 × S5 × S5, Journal of Symbolic Logic, vol. 67(1) (2002), pp. 221–234, DOI: https://doi.org/10.2178/jsl/1190150040en
dc.references[15] I. Hodkinson, Atom structures of cylindric algebras and relation algebras, Annals of Pure and Applied Logic, vol. 89(2) (1997), pp. 117–148, DOI: https://doi.org/10.1016/S0168-0072(97)00015-8en
dc.references[16] A. Kurucz, Representable cylindric algebras and many dimensional modal logics, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, vol. 22 of Bolyai Society Mathematical Studies, Springer Verlag (2013), pp. 185–204, DOI: https://doi.org/10.1007/978-3-642-35025-2_9en
dc.references[17] R. D. Maddux, Nonfinite axiomatizability results for cylindric and relation algebras, Journal of Symbolic Logic, vol. 54(3) (1989), pp. 951–974, DOI: https://doi.org/10.2307/2274756en
dc.references[18] T. Sayed Ahmed, Amalgamation for reducts of polyadic algebras, Algebra Universalis, vol. 51 (2004), pp. 301–359, DOI: https://doi.org/10.1007/s00012-004-1807-yen
dc.references[19] T. Sayed Ahmed, Completions, Complete representations and Omitting types, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, vol. 22 of Bolyai Society Mathematical Studies, Springer Verlag (2013), pp. 205–221, DOI: https://doi.org/10.1007/978-3-642-35025-2_10en
dc.references[20] T. Sayed Ahmed, Neat reducts and neat embeddings in cylindric algebras, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, vol. 22 of Bolyai Society Mathematical Studies, Springer Verlag (2013), pp. 105–134, DOI: https://doi.org/10.1007/978-3-642-35025-2_6en
dc.references[21] T. Sayed Ahmed, The class of completely representable polyadic algebras of infinite dimensions is elementary, Algebra Universalis, vol. 72(1) (2014), pp. 371–390, DOI: https://doi.org/10.1007/s00012-014-0307-yen
dc.references[22] T. Sayed Ahmed, On notions of representability for cylindric-polyadic algebras, and a solution to the finitizability problem for quantifier logics with equality, Mathematical Logic Quarterly, vol. 61(6) (2015), pp. 418–477, DOI: https://doi.org/10.1002/malq.201300064en
dc.references[23] T. Sayed Ahmed, Representability for cylindric and polyadic algebras, Studia Mathematicea Hungarica, vol. 56(3) (2019), pp. 335–363.en
dc.references[24] S. Shelah, Classification Theory, vol. 92 of Studies in Logic and the Foundations of Mathematics, Elsevier (1978).en
dc.references[25] Y. Venema, Atom structures and Sahlqvist equations, Algebra Universalis, vol. 38 (1997), pp. 185–199, DOI: https://doi.org/10.1007/s000120050047en
dc.contributor.authorEmailrutahmed@gmail.com
dc.identifier.doi10.18778/0138-0680.2021.13
dc.relation.volume50


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0