Show simple item record

dc.contributor.authorGallardo, Carlos
dc.contributor.authorZiliani, Alicia
dc.date.accessioned2021-11-05T10:31:55Z
dc.date.available2021-11-05T10:31:55Z
dc.date.issued2021-05-27
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/39684
dc.description.abstractIn 2004, C. Sanza, with the purpose of legitimizing the study of \(n\times m\)-valued Łukasiewicz algebras with negation (or \(\mathbf{NS}_{n\times m}\)-algebras) introduced \(3 \times 3\)-valued Łukasiewicz algebras with negation. Despite the various results obtained about \(\mathbf{NS}_{n\times m}\)-algebras, the structure of the free algebras for this variety has not been determined yet. She only obtained a bound for their cardinal number with a finite number of free generators. In this note we describe the structure of the free finitely generated \(NS_{3 \times 3}\)-algebras and we determine a formula to calculate its cardinal number in terms of the number of free generators. Moreover, we obtain the lattice \(\Lambda(\mathbf{NS}_{3\times 3})\) of all subvarieties of \(\mathbf{NS}_{3\times 3}\) and we show that the varieties of Boolean algebras, three-valued Łukasiewicz algebras and four-valued Łukasiewicz algebras are proper subvarieties of \(\mathbf{NS}_{3\times 3}\).  en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;3en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subject\(n\)-valued Łukasiewicz-Moisil algebrasen
dc.subject\(n \times m\)-valued Łukasiewicz algebras with negationen
dc.subjectfree algebrasen
dc.subjectlattice of subvarietiesen
dc.titleA Note on 3×3-valued Łukasiewicz Algebras with Negationen
dc.typeOther
dc.page.number289-298
dc.contributor.authorAffiliationGallardo, Carlos - Universidad Nacional del Sur, Departamento de Matemáticaen
dc.contributor.authorAffiliationZiliani, Alicia - Universidad Nacional del Sur, Departamento de Matemáticaen
dc.identifier.eissn2449-836X
dc.references[1] N. Belnap, How a computer should think, Oriel Press, Boston (1977), pp. 30–56.en
dc.references[2] V. Boicescu, A. Filipoiu, G. Georgescu, S.Rudeanu, Łukasiewicz-Moisil Algebras, vol. 49 of Annals of Discrete Mathematics, North-Holland, Amsterdam (1991).en
dc.references[3] S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, vol. 78 of Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin (1981).en
dc.references[4] R. Cignoli, Moisil Algebras, vol. 27 of Notas de Lógica Matemática, Universidad Nacional del Sur, Argentina (1970).en
dc.references[5] A. Day, Splitting algebras and a weak notion of projectivity, Algebra Universalis, vol. 5 (1975), pp. 153–162, DOI: https://doi.org/10.1007/BF02485249en
dc.references[6] A. Day, On the lattice of subvarietes, Houston Journal of Mathematics, vol. 5 (1979), pp. 183–192.en
dc.references[7] A. V. Figallo, C. Sanza, The NSn×m–propositional calculus, Bulletin of the Section of Logic, vol. 37 (2008), pp. 67–79.en
dc.references[8] C. Gallardo, C. Sanza, A. Ziliani, F–multipliers and the localization of LMn×m–algebras, Analele Stiintifice ale Universitatii Ovidius Constanta, vol. 21 (2013), pp. 285–304, DOI: https://doi.org/10.2478/auom-2013-0019en
dc.references[9] B. Jonnson, Algebras whose congruence lattices are distributive, Mathematica Scandinavica, vol. 21 (1967), pp. 110–121, DOI: https://doi.org/10.7146/math.scand.a-10850en
dc.references[10] G. Moisil, Notes sur les logiques non-chrysippiennes, Annales Scientifiques de l’Université de Jassy, vol. 27 (1941), pp. 86–98.en
dc.references[11] G. Moisil, Le algebre di Łukasiewicz, Analele Universitii Bucureti, seria Acta logica, vol. 6 (1963), pp. 97–135.en
dc.references[12] C. Sanza, Algebras de Łukasiewicz n×m-valuadas con negación, Ph.D. thesis, Universidad Nacional del Sur, Argentina (2004).en
dc.references[13] C. Sanza, Notes on n×m–valued Łukasiewicz algebras with negation, Logic Journal of the IGPL, vol. 12 (2004), pp. 499–507, DOI: https://doi.org/10.1093/jigpal/12.6.499en
dc.references[14] C. Sanza, n×m–valued Łukasiewicz algebras with negation, Reports on Mathematical Logic, vol. 40 (2006), pp. 83–106.en
dc.references[15] C. Sanza, On n×m–valued Łukasiewicz-Moisil algebras, Central European Journal of Mathematics, vol. 6 (2008), pp. 372–383, DOI: https://doi.org/10.2478/s11533-008-0035-7en
dc.references[16] W. Suchoń, Matrix Łukasiewicz algebras, Reports on Mathematical Logic, vol. 4 (1975), pp. 91–104.en
dc.contributor.authorEmailGallardo, Carlos - gallardosss@gmail.com
dc.contributor.authorEmailZiliani, Alicia - aziliani@gmail.com
dc.identifier.doi10.18778/0138-0680.2021.10
dc.relation.volume50


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0