Show simple item record

dc.contributor.authorRobles, Gemma
dc.contributor.authorMéndez, José M.
dc.date.accessioned2021-11-05T10:31:57Z
dc.date.available2021-11-05T10:31:57Z
dc.date.issued2021-07-01
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/39686
dc.description.abstractLet \(A_{0},A_{1},...,A_{n}\) be (possibly) distintict wffs, \(n\) being an odd number equal to or greater than 1. Intuitionistic Propositional Logic IPC plus the axiom \((A_{0}\rightarrow A_{1})\vee ...\vee (A_{n-1}\rightarrow A_{n})\vee (A_{n}\rightarrow A_{0})\) is equivalent to Gödel-Dummett logic LC. However, if \(n\) is an even number equal to or greater than 2, IPC plus the said axiom is a sublogic of LC.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;3en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectIntermediate logicsen
dc.subjectGödel-Dummet logic LCen
dc.titleA Note on Gödel-Dummet Logic LCen
dc.typeOther
dc.page.number325-335
dc.contributor.authorAffiliationRobles, Gemma - University of León, Department of Psychology, Sociology and Philosophyen
dc.contributor.authorAffiliationMéndez, José M. - University of Salamancaen
dc.identifier.eissn2449-836X
dc.references[1] A. R. Anderson, N. D. Belnap Jr., Entailment. The Logic of Relevance and Necessity, vol. I, Princeton University Press, Princeton, NJ (1975).en
dc.references[2] M. Dummett, A propositional calculus with denumerable matrix, Journal of Symbolic Logic, vol. 24(2) (1959), pp. 97–106, DOI: https://doi.org/10.2307/2964753en
dc.references[3] K. Gödel, Zum intuitionistischen Aussagenkalkül, Anzeiger der Akademie der Wissenschaften in Wien, vol. 69 (1932), pp. 65–66.en
dc.references[4] D. D. Jongh, F. S. Maleki, Below Gödel-Dummett, [in:] Booklet of abstracts of Syntax meets Semantics 2019 (SYSMICS 2019), Institute of Logic, Language and Computation, University of Amsterdam (2019), pp. 99–102.en
dc.references[5] J. Moschovakis, Intuitionistic Logic, [in:] E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, winter 2018 ed. (2018), URL: https://plato.stanford.edu/archives/win2018/entries/logic-intuitionisticen
dc.references[6] G. Robles, J. M. Méndez, A binary Routley semantics for intuitionistic De Morgan minimal logic HM and its extensions, Logic Journal of the IGPL, vol. 23(2) (2014), pp. 174–193, DOI: https://doi.org/10.1093/jigpal/jzu029en
dc.references[7] J. K. Slaney, MaGIC, Matrix Generator for Implication Connectives: Version 2.1, Notes and Guide (1995), http://users.cecs.anu.edu.au/jks/magic.htmlen
dc.contributor.authorEmailRobles, Gemma - gemma.robles@unileon.es
dc.contributor.authorEmailMéndez, José M. - sefus@usal.es
dc.identifier.doi10.18778/0138-0680.2021.15
dc.relation.volume50


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0