dc.contributor.author | Robles, Gemma | |
dc.contributor.author | Méndez, José M. | |
dc.date.accessioned | 2021-11-05T10:31:57Z | |
dc.date.available | 2021-11-05T10:31:57Z | |
dc.date.issued | 2021-07-01 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/39686 | |
dc.description.abstract | Let \(A_{0},A_{1},...,A_{n}\) be (possibly) distintict wffs, \(n\) being an odd number equal to or greater than 1. Intuitionistic Propositional Logic IPC plus the axiom \((A_{0}\rightarrow A_{1})\vee ...\vee (A_{n-1}\rightarrow A_{n})\vee (A_{n}\rightarrow A_{0})\) is equivalent to Gödel-Dummett logic LC. However, if \(n\) is an even number equal to or greater than 2, IPC plus the said axiom is a sublogic of LC. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;3 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | Intermediate logics | en |
dc.subject | Gödel-Dummet logic LC | en |
dc.title | A Note on Gödel-Dummet Logic LC | en |
dc.type | Other | |
dc.page.number | 325-335 | |
dc.contributor.authorAffiliation | Robles, Gemma - University of León, Department of Psychology, Sociology and Philosophy | en |
dc.contributor.authorAffiliation | Méndez, José M. - University of Salamanca | en |
dc.identifier.eissn | 2449-836X | |
dc.references | [1] A. R. Anderson, N. D. Belnap Jr., Entailment. The Logic of Relevance and Necessity, vol. I, Princeton University Press, Princeton, NJ (1975). | en |
dc.references | [2] M. Dummett, A propositional calculus with denumerable matrix, Journal of Symbolic Logic, vol. 24(2) (1959), pp. 97–106, DOI: https://doi.org/10.2307/2964753 | en |
dc.references | [3] K. Gödel, Zum intuitionistischen Aussagenkalkül, Anzeiger der Akademie der Wissenschaften in Wien, vol. 69 (1932), pp. 65–66. | en |
dc.references | [4] D. D. Jongh, F. S. Maleki, Below Gödel-Dummett, [in:] Booklet of abstracts of Syntax meets Semantics 2019 (SYSMICS 2019), Institute of Logic, Language and Computation, University of Amsterdam (2019), pp. 99–102. | en |
dc.references | [5] J. Moschovakis, Intuitionistic Logic, [in:] E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, winter 2018 ed. (2018), URL: https://plato.stanford.edu/archives/win2018/entries/logic-intuitionistic | en |
dc.references | [6] G. Robles, J. M. Méndez, A binary Routley semantics for intuitionistic De Morgan minimal logic HM and its extensions, Logic Journal of the IGPL, vol. 23(2) (2014), pp. 174–193, DOI: https://doi.org/10.1093/jigpal/jzu029 | en |
dc.references | [7] J. K. Slaney, MaGIC, Matrix Generator for Implication Connectives: Version 2.1, Notes and Guide (1995), http://users.cecs.anu.edu.au/jks/magic.html | en |
dc.contributor.authorEmail | Robles, Gemma - gemma.robles@unileon.es | |
dc.contributor.authorEmail | Méndez, José M. - sefus@usal.es | |
dc.identifier.doi | 10.18778/0138-0680.2021.15 | |
dc.relation.volume | 50 | |