Pokaż uproszczony rekord

dc.contributor.authorBordbar, Hashem
dc.contributor.authorBorzooei, Rajab Ali
dc.contributor.authorSmarandache, Florentin
dc.contributor.authorJun, Young Bae
dc.date.accessioned2021-11-05T10:31:58Z
dc.date.available2021-11-05T10:31:58Z
dc.date.issued2020-08-15
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/39688
dc.description.abstractMore general form of (∈, ∈ ∨q)-neutrosophic ideal is introduced, and their properties are investigated. Relations between (∈, ∈)-neutrosophic ideal and (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic ideal are discussed. Characterizations of (∈, ∈∨q(kT ,kI,kF ))-neutrosophic ideal are discussed, and conditions for a neutrosophic set to be an (∈, ∈∨q(kT ,kI ,kF ))-neutrosophic ideal are displayed.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;3en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectIdealen
dc.subjectneutrosophic ∈-subseten
dc.subjectneutrosophic qk -subseten
dc.subjectneutrosophic ∈ ∨qk -subseten
dc.subject(∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic idealen
dc.titleA General Model of Neutrosophic Ideals in BCK/BCI-algebras Based on Neutrosophic Pointsen
dc.typeOther
dc.page.number355-371
dc.contributor.authorAffiliationBordbar, Hashem - University of Nova Gorica, Center for Information Technologies and Applied Mathematicsen
dc.contributor.authorAffiliationBorzooei, Rajab Ali - Shahid Beheshti University, Department of Mathematicsen
dc.contributor.authorAffiliationSmarandache, Florentin - University of New Mexico, Mathematics & Science Departmenten
dc.contributor.authorAffiliationJun, Young Bae - Gyeongsang National University, Department of Mathematics Educationen
dc.identifier.eissn2449-836X
dc.references[1] H. Bordbar, I. Cristea, Height of prime hyperideals in Krasner hyperrings, Filomat, vol. 31(1) (1944), pp. 6153–6163, DOI: http://dx.doi.org/10.2298/FIL1719153Ben
dc.references[2] H. Bordbar, I. Cristea, M. Novak, Height of hyperideals in Noetherian Krasner hyperrings, Scientific Bulletin – “Politehnica” University of Bucharest. Series A, Applied mathematics and physics., vol. 79(2) (2017), pp. 31–42.en
dc.references[3] H. Bordbar, H. Harizavi, Y. Jun, Uni-soft ideals in coresiduated lattices, Sigma Journal of Engineering and Natural Sciences, vol. 9(1) (2018), pp. 69–75.en
dc.references[4] H. Bordbar, Y. B. Jun, S. Z. Song, Homomorphic Image and Inverse Image of Weak Closure Operations on Ideals of BCK-Algebras, Mathematics, vol. 8(4) (2020), p. 576, DOI: http://dx.doi.org/10.3390/math8040567en
dc.references[5] H. Bordbar, G. Muhiuddin, A. M. Alanazi, Primeness of Relative Annihilators in BCK-Algebra, Symmetry, vol. 12(2) (2020), p. 286, DOI: http://dx.doi.org/10.3390/sym12020286en
dc.references[6] H. Bordbar, M. Novak, I. Cristea, A note on the support of a hypermodule, Journal of Algebra and Its Applications, vol. 19(01) (2020), p. 2050019, DOI: http://dx.doi.org/10.1142/S021949882050019Xen
dc.references[7] H. Bordbar, M. Takallo, R. Borzooei, Y. B. Jun, BMBJ-neutrosophic subalgebra in BCK/BCI-algebras, Neutrosophic Sets and System, vol. 27(1) (2020).en
dc.references[8] H. Bordbar, M. M. Zahedi, Y. B. Jun, Relative annihilators in lower BCK-semilattices, Mathematical Sciences Letters, vol. 6(2) (2017), pp. 1–7, DOI: http://dx.doi.org/10.18576/msl/BZJ-20151219R1en
dc.references[9] Y. S. Huang, BCI-algebra, Beijing, Science Press, Cambridge (2006).en
dc.references[10] Y. B. Jun, Neutrosophic subalgebras of several types in BCK/BCI-algebras, Annals of Fuzzy Mathematics and Informatics, vol. 14(1) (2017), pp. 75–86.en
dc.references[11] Y. B. Jun, F. Smarandache, H. Bordbar, Neutrosophic N-structures applied to BCK/BCI-algebras, Informations, vol. 8(1) (2017), p. 128, DOI: http://dx.doi.org/10.3390/info8040128en
dc.references[12] Y. B. Jun, F. Smarandache, H. Bordbar, Neutrosophic falling shadows applied to subalgebras and ideals in BCK/BCI-algebras, Annals of Fuzzy Mathematics and Informatics, vol. 15(3) (2018).en
dc.references[13] Y. B. Jun, F. Smarandache, S. Z. Song, H. Bordbar, Neutrosophic Permeable Values and Energetic Subsets with Applications in BCK/BCI-Algebras, Mathematics, vol. 5(6) (2018), pp. 74–90, DOI: http://dx.doi.org/10.3390/math6050074en
dc.references[14] Y. B. Jun, S. Z. Song, F. Smarandache, H. Bordbar, Neutrosophic Quadruple BCK/BCI-Algebras, Axioms, vol. 7(2) (2018), p. 41, DOI: http://dx.doi.org/10.3390/axioms7020041en
dc.references[15] J. Meng, Y. B. Jun, BCK-algebras, Kyungmoon Sa Co., Seoul (1994).en
dc.references[16] G. Muhiuddin, A. N. Al-kenani, E. H. Roh, Y. B. Jun, Implicative neutrosophic quadruple BCK-algebras and ideals, Symmetry, vol. 11(2) (2019), p. 277, DOI: http://dx.doi.org/10.3390/sym11020277en
dc.references[17] G. Muhiuddin, H. Bordbar, F. Smarandache, Y. B. Jun, Further results on (∈, ∈)-neutrosophic subalgebras and ideals in BCK/BCI-algebras, Neutrosophic Sets and Systems, vol. 20 (2018), pp. 36–43.en
dc.references[18] G. Muhiuddin, Y. B. Jun, Further results of neutrosophic subalgebras in BCK/BCI-algebras based on neutrosophic point, TWMS Journal of Applied and Engineering Mathematics, vol. 10(2) (2020), pp. 232–240.en
dc.references[19] G. Muhiuddin, S. J. Kim, Y. B. Jun, Implicative N-ideals of BCK-algebras based on neutrosophic N-structures, Discrete Mathematics, Algorithms and Applications, vol. 11(1) (2019), p. 1950011, DOI: http://dx.doi.org/10.1142/S1793830919500113en
dc.references[20] G. Muhiuddin, F. Smarandache, Y. B. Jun, Neutrosophic quadruple ideals in neutrosophic quadruple BCI-algebras, Neutrosophic Sets and Systems, vol. 25 (2019), pp. 161–173.en
dc.references[21] M. A. Öztürk, Y. B. Jun, Neutrosophic ideals in BCK/BCI-algebras based on neutrosophic points, Journal of International Mathematical Virtual Institute, vol. 8(1) (2018), pp. 1–17.en
dc.references[22] A. B. Saeid, Y. B. Jun, Neutrosophic subalgebras of BCK/BCI-algebras based on neutrosophic points, Annals of Fuzzy Mathematics and Informatics, vol. 14(2) (2017), pp. 87–97.en
dc.references[23] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability, American Reserch Press, Rehoboth, N. M. (1999).en
dc.references[24] F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, International Journal of Pure and Applied Mathematics, vol. 24(3) (2005), pp. 287–297.en
dc.references[25] S. Z. Song, F. Smarandache, Y. B. Jun, Neutrosophic commutative N-ideals in BCK-algebras, Informations, vol. 8 (2017), p. 130, DOI: http://dx.doi.org/10.3390/info8040130en
dc.references[26] M. M. Takalloand, H. Bordbar, R. A. Borzooei, Y. B. Jun, BMBJ-neutrosophic ideals in BCK/BCI-algebras, Neutrosophic Sets and Systems, vol. 1(27) (2019).en
dc.contributor.authorEmailBordbar, Hashem - hashem.bordbar@ung.si
dc.contributor.authorEmailBorzooei, Rajab Ali - borzooei@sbu.ac.ir
dc.contributor.authorEmailSmarandache, Florentin - fsmarandache@gmail.com
dc.contributor.authorEmailJun, Young Bae - skywine@gmail.com
dc.identifier.doi10.18778/0138-0680.2020.18
dc.relation.volume50


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

http://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako http://creativecommons.org/licenses/by-nc-nd/4.0