Pokaż uproszczony rekord

dc.contributor.authorInoue, Takao
dc.date.accessioned2022-03-10T17:28:34Z
dc.date.available2022-03-10T17:28:34Z
dc.date.issued2021-11-09
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/41066
dc.description.abstractIn this paper, we shall show that the following translation \(I^M\) from the propositional fragment \(\bf L_1\) of Leśniewski's ontology to modal logic \(\bf KTB\) is sound: for any formula \(\phi\) and \(\psi\) of \(\bf L_1\), it is defined as(M1) \(I^M(\phi \vee \psi) = I^M(\phi) \vee I^M(\psi)\),(M2) \(I^M(\neg \phi) = \neg I^M(\phi)\),(M3) \(I^M(\epsilon ab) = \Diamond p_a \supset p_a . \wedge . \Box p_a \supset \Box p_b .\wedge . \Diamond p_b \supset p_a\),where \(p_a\) and \(p_b\) are propositional variables corresponding to the name variables \(a\) and \(b\), respectively. In the last, we shall give some comments including some open problems and my conjectures.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;4en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectLe´sniewski’s ontologyen
dc.subjectpropositional ontologyen
dc.subjecttranslationen
dc.subjectinterpretationen
dc.subjectmodal logicen
dc.subjectKTBen
dc.subjectsoundnessen
dc.subjectGrzegorczyk’s modal logicen
dc.titleA Sound Interpretation of Leśniewski's Epsilon in Modal Logic KTBen
dc.typeOther
dc.page.number455-463
dc.contributor.authorAffiliationMeiji Pharmaceutical University, Department of Medical Molecular Informatics, Tokyo, Japan; Hosei University, Graduate School of Science and Engineering Tokyo, Japanen
dc.identifier.eissn2449-836X
dc.references[1] L. Aqvist, Deontic logic, [in:] D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol. II: Extensions of Classical Logic, D. Reidel, Dordrecht (1984), pp. 605–714, DOI: https://doi.org/10.1007/978-94-009-6259-0en
dc.references[2] A. Blass, A faithful modal interpretation of propositional ontology, Mathematica Japonica, vol. 40 (1994), pp. 217–223.en
dc.references[3] G. Boolos, The Logic of Provability, Cambridge University Press, Cambridge (1993), DOI: https://doi.org/10.1017/CBO9780511625183en
dc.references[4] R. A. Bull, K. Segerberg, Basic modal logic, [in:] D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol. II: Extensions of Classical Logic, D. Reidel, Dordrecht (1984), pp. 1–82, DOI: https://doi.org/10.1007/978-94-009-6259-0en
dc.references[5] A. Chagrov, M. Zakharyaschev, Modal Logic, Clarendon Press, Oxford (1997).en
dc.references[6] M. Fitting, Proof Methods for Modal and Intuitionistic Logics, vol. 168 of Synthese Library, D. Reidel, Dordrecht (1983), DOI: https://doi.org/10.1007/978-94-017-2794-5en
dc.references[7] J. D. Hamkins, B. Löwe, The modal logic of forcing, Transactions of the American Mathematical Society, vol. 360 (2007), pp. 1793–1817, DOI: https://doi.org/10.1090/S0002-9947-07-04297-3en
dc.references[8]G. E. Hughes, M. J. Cresswell, A Companion to Modal Logic, Methuen, London (1984).en
dc.references[9] T. Inoué, Partial interpretation of Leśniewski’s epsilon in modal and intensional logics (abstract), The Bulletin of Symbolic Logic, vol. 1 (1995), pp. 95–96.en
dc.references[10] T. Inoué, Partial interpretations of Leśniewski’s epsilon in von Wright-type deontic logics and provability logics, Bulletin of the Section of Logic, vol. 24(4) (1995), pp. 223–233.en
dc.references[11] T. Inoué, On Blass translation for Leśniewski’s propositional ontology and modal logics, Studia Logica, (2021), DOI: https://doi.org/10.1007/s11225-021-09962-1en
dc.references[12] A. Ishimoto, A propositional fragment of Leśniewski’s ontology, Studia Logica, vol. 36 (1977), pp. 285–299, DOI: https://doi.org/10.1007/BF02120666en
dc.references[13] M. Kobayashi, A. Ishimoto, A propositional fragment of Leśniewski’s ontology and its formulation by the tableau method, Studia Logica, vol. 41 (1982), pp. 181–195, DOI: https://doi.org/10.1007/BF00370344en
dc.references[14] H. Ono, Proof Theory and Algebra in Logic, vol. 2 of Short Textbooks in Logic, Springer, Singapore (2019), DOI: https://doi.org/10.1007/978-981-13-7997-0en
dc.references[15] F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, vol. 32 of Trends in Logic Series, Springer, Dordrecht (2011), DOI: https://doi.org/10.1007/978-90-481-9670-8en
dc.references[16] Y. Savateev, D. Shamkanov, Non-well-founded proofs for the Grzegorczyk modal logic, The Review of Symbolic Logic, vol. 14 (2021), pp. 22–50, DOI: https://doi.org/10.1017/S1755020319000510en
dc.references[17] J. Słupecki, S. Leśniewski’s calculus of names, Studia Logica, vol. 3 (1955), pp. 7–71, DOI: https://doi.org/10.1007/BF02067245en
dc.references[18] M. Takano, A semantical investigation into Leśniewski’s axiom of his ontology, Studia Logica, vol. 44 (1985), pp. 71–77, DOI: https://doi.org/10.1007/BF00370810en
dc.references[19] R. Urbaniak, Leśniewski’s Systems of Logic and Foundations of Mathematics, vol. 37 of Trends in Logic Series, Springer, Cham (2014), DOI: https://doi.org/10.1007/978-3-319-00482-2en
dc.contributor.authorEmailtakaoapple@gmail.com
dc.identifier.doi10.18778/0138-0680.2021.25
dc.relation.volume50


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0