dc.contributor.author | Inoue, Takao | |
dc.date.accessioned | 2022-03-10T17:28:34Z | |
dc.date.available | 2022-03-10T17:28:34Z | |
dc.date.issued | 2021-11-09 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/41066 | |
dc.description.abstract | In this paper, we shall show that the following translation \(I^M\) from the propositional fragment \(\bf L_1\) of Leśniewski's ontology to modal logic \(\bf KTB\) is sound: for any formula \(\phi\) and \(\psi\) of \(\bf L_1\), it is defined as(M1) \(I^M(\phi \vee \psi) = I^M(\phi) \vee I^M(\psi)\),(M2) \(I^M(\neg \phi) = \neg I^M(\phi)\),(M3) \(I^M(\epsilon ab) = \Diamond p_a \supset p_a . \wedge . \Box p_a \supset \Box p_b .\wedge . \Diamond p_b \supset p_a\),where \(p_a\) and \(p_b\) are propositional variables corresponding to the name variables \(a\) and \(b\), respectively. In the last, we shall give some comments including some open problems and my conjectures. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;4 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | Le´sniewski’s ontology | en |
dc.subject | propositional ontology | en |
dc.subject | translation | en |
dc.subject | interpretation | en |
dc.subject | modal logic | en |
dc.subject | KTB | en |
dc.subject | soundness | en |
dc.subject | Grzegorczyk’s modal logic | en |
dc.title | A Sound Interpretation of Leśniewski's Epsilon in Modal Logic KTB | en |
dc.type | Other | |
dc.page.number | 455-463 | |
dc.contributor.authorAffiliation | Meiji Pharmaceutical University, Department of Medical Molecular Informatics, Tokyo, Japan; Hosei University, Graduate School of Science and Engineering Tokyo, Japan | en |
dc.identifier.eissn | 2449-836X | |
dc.references | [1] L. Aqvist, Deontic logic, [in:] D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol. II: Extensions of Classical Logic, D. Reidel, Dordrecht (1984), pp. 605–714, DOI: https://doi.org/10.1007/978-94-009-6259-0 | en |
dc.references | [2] A. Blass, A faithful modal interpretation of propositional ontology, Mathematica Japonica, vol. 40 (1994), pp. 217–223. | en |
dc.references | [3] G. Boolos, The Logic of Provability, Cambridge University Press, Cambridge (1993), DOI: https://doi.org/10.1017/CBO9780511625183 | en |
dc.references | [4] R. A. Bull, K. Segerberg, Basic modal logic, [in:] D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol. II: Extensions of Classical Logic, D. Reidel, Dordrecht (1984), pp. 1–82, DOI: https://doi.org/10.1007/978-94-009-6259-0 | en |
dc.references | [5] A. Chagrov, M. Zakharyaschev, Modal Logic, Clarendon Press, Oxford (1997). | en |
dc.references | [6] M. Fitting, Proof Methods for Modal and Intuitionistic Logics, vol. 168 of Synthese Library, D. Reidel, Dordrecht (1983), DOI: https://doi.org/10.1007/978-94-017-2794-5 | en |
dc.references | [7] J. D. Hamkins, B. Löwe, The modal logic of forcing, Transactions of the American Mathematical Society, vol. 360 (2007), pp. 1793–1817, DOI: https://doi.org/10.1090/S0002-9947-07-04297-3 | en |
dc.references | [8]G. E. Hughes, M. J. Cresswell, A Companion to Modal Logic, Methuen, London (1984). | en |
dc.references | [9] T. Inoué, Partial interpretation of Leśniewski’s epsilon in modal and intensional logics (abstract), The Bulletin of Symbolic Logic, vol. 1 (1995), pp. 95–96. | en |
dc.references | [10] T. Inoué, Partial interpretations of Leśniewski’s epsilon in von Wright-type deontic logics and provability logics, Bulletin of the Section of Logic, vol. 24(4) (1995), pp. 223–233. | en |
dc.references | [11] T. Inoué, On Blass translation for Leśniewski’s propositional ontology and modal logics, Studia Logica, (2021), DOI: https://doi.org/10.1007/s11225-021-09962-1 | en |
dc.references | [12] A. Ishimoto, A propositional fragment of Leśniewski’s ontology, Studia Logica, vol. 36 (1977), pp. 285–299, DOI: https://doi.org/10.1007/BF02120666 | en |
dc.references | [13] M. Kobayashi, A. Ishimoto, A propositional fragment of Leśniewski’s ontology and its formulation by the tableau method, Studia Logica, vol. 41 (1982), pp. 181–195, DOI: https://doi.org/10.1007/BF00370344 | en |
dc.references | [14] H. Ono, Proof Theory and Algebra in Logic, vol. 2 of Short Textbooks in Logic, Springer, Singapore (2019), DOI: https://doi.org/10.1007/978-981-13-7997-0 | en |
dc.references | [15] F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, vol. 32 of Trends in Logic Series, Springer, Dordrecht (2011), DOI: https://doi.org/10.1007/978-90-481-9670-8 | en |
dc.references | [16] Y. Savateev, D. Shamkanov, Non-well-founded proofs for the Grzegorczyk modal logic, The Review of Symbolic Logic, vol. 14 (2021), pp. 22–50, DOI: https://doi.org/10.1017/S1755020319000510 | en |
dc.references | [17] J. Słupecki, S. Leśniewski’s calculus of names, Studia Logica, vol. 3 (1955), pp. 7–71, DOI: https://doi.org/10.1007/BF02067245 | en |
dc.references | [18] M. Takano, A semantical investigation into Leśniewski’s axiom of his ontology, Studia Logica, vol. 44 (1985), pp. 71–77, DOI: https://doi.org/10.1007/BF00370810 | en |
dc.references | [19] R. Urbaniak, Leśniewski’s Systems of Logic and Foundations of Mathematics, vol. 37 of Trends in Logic Series, Springer, Cham (2014), DOI: https://doi.org/10.1007/978-3-319-00482-2 | en |
dc.contributor.authorEmail | takaoapple@gmail.com | |
dc.identifier.doi | 10.18778/0138-0680.2021.25 | |
dc.relation.volume | 50 | |