On Complete Representations and Minimal Completions in Algebraic Logic, Both Positive and Negative Results
Streszczenie
Fix a finite ordinal \(n\geq 3\) and let \(\alpha\) be an arbitrary ordinal. Let \(\mathsf{CA}_n\) denote the class of cylindric algebras of dimension \(n\) and \(\sf RA\) denote the class of relation algebras. Let \(\mathbf{PA}_{\alpha}(\mathsf{PEA}_{\alpha})\) stand for the class of polyadic (equality) algebras of dimension \(\alpha\). We reprove that the class \(\mathsf{CRCA}_n\) of completely representable \(\mathsf{CA}_n\)s, and the class \(\sf CRRA\) of completely representable \(\mathsf{RA}\)s are not elementary, a result of Hirsch and Hodkinson. We extend this result to any variety \(\sf V\) between polyadic algebras of dimension \(n\) and diagonal free \(\mathsf{CA}_n\)s. We show that that the class of completely and strongly representable algebras in \(\sf V\) is not elementary either, reproving a result of Bulian and Hodkinson. For relation algebras, we can and will, go further. We show the class \(\sf CRRA\) is not closed under \(\equiv_{\infty,\omega}\). In contrast, we show that given \(\alpha\geq \omega\), and an atomic \(\mathfrak{A}\in \mathsf{PEA}_{\alpha}\), then for any \(n/p>
Collections
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0
Powiązane pozycje
Wyświetlanie pozycji powiązanych tytułem, autorstwem i tematem.
-
Categorical Abstract Algebraic Logic: Referential π-Institutions
Voutsadakis, George (Wydawnictwo Uniwersytetu Łódzkiego, 2015)Wójcicki introduced in the late 1970s the concept of a referential semantics for propositional logics. Referential semantics incorporate features of the Kripke possible world semantics for modal logics into the realm of ... -
Unifiability and Structural Completeness in Relation Algebras and in Products of Modal Logic S5
Dzik, Wojciech; Wróbel, Beniamin (Wydawnictwo Uniwersytetu Łódzkiego, 2015)Unifiability of terms (and formulas) and structural completeness in the variety of relation algebras RA and in the products of modal logic S5 is investigated. Nonunifiable terms (formulas) which are satisfiable in varieties ... -
Simple Logics for Basic Algebras
Cı̅rulis, Ja̅nis (Wydawnictwo Uniwersytetu Łódzkiego, 2015)An MV-algebra is an algebra (A, ⊕, ¬, 0), where (A, ⊕, 0) is a commutative monoid and ¬ is an idempotent operation on A satisfying also some additional axioms. Basic algebras are similar algebras that can roughly be ...