Pokaż uproszczony rekord

dc.contributor.authorHao, Yunge
dc.contributor.authorTourlakis, George
dc.date.accessioned2022-03-10T17:28:37Z
dc.date.available2022-03-10T17:28:37Z
dc.date.issued2021-08-23
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/41068
dc.description.abstractThis paper investigates a first-order extension of GL called \(\textup{ML}^3\). We outline briefly the history that led to \(\textup{ML}^3\), its key properties and some of its toolbox: the \emph{conservation theorem}, its cut-free Gentzenisation, the ``formulators'' tool. Its semantic completeness (with respect to finite reverse well-founded Kripke models) is fully stated in the current paper and the proof is retold here. Applying the Solovay technique to those models the present paper establishes its main result, namely, that \(\textup{ML}^3\) is arithmetically complete. As expanded below, \(\textup{ML}^3\) is a first-order modal logic that along with its built-in ability to simulate general classical first-order provability―"\(\Box\)" simulating the the informal classical "\(\vdash\)"―is also arithmetically complete in the Solovay sense.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;4en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectPredicate modal logicen
dc.subjectarithmetic completenessen
dc.subjectlogic GLen
dc.subjectSolovay's theoremen
dc.subjectequational proofsen
dc.titleAn Arithmetically Complete Predicate Modal Logicen
dc.typeOther
dc.page.number513-541
dc.contributor.authorAffiliationHao, Yunge - York University, Department of Electrical Engineering and Computer Scienceen
dc.contributor.authorAffiliationTourlakis, George - York University, Department of Electrical Engineering and Computer Scienceen
dc.identifier.eissn2449-836X
dc.referencesS. Artemov, G. Dzhaparidze, Finite Kripke Models and Predicate Logics of Provability, Journal of Symbolic Logic, vol. 55(3) (1990), pp. 1090–1098, DOI: https://doi.org/10.2307/2274475en
dc.referencesA. Avron, On modal systems having arithmetical interpretations, Journal of Symbolic Logic, vol. 49(3) (1984), pp. 935–942, DOI: https://doi.org/10.2307/2274147en
dc.referencesG. Boolos, The logic of provability, Cambridge University Press (2003), DOI: https://doi.org/10.1017/CBO9780511625183en
dc.referencesE. W. Dijkstra, C. S. Scholten, Predicate Calculus and Program Semantics, Springer, New York (1990), DOI: https://doi.org/10.1007/978-1-4612-3228-5en
dc.referencesK. Fine, Failures of the interpolation lemma in quantfied modal logic, Journal of Symbolic Logic, vol. 44(2) (1979), pp. 201–206, DOI: https://doi.org/10.2307/2273727en
dc.referencesF. Gao, G. Tourlakis, A Short and Readable Proof of Cut Elimination for Two First-Order Modal Logics, Bulletin of the Section of Logic, vol. 44(3/4) (2015), DOI: https://doi.org/10.18778/0138-0680.44.3.4.03en
dc.referencesK. Gödel, Eine Interpretation des intuitionistischen Aussagenkalkuls, Ergebnisse Math, vol. 4 (1933), pp. 39–40.en
dc.referencesD. Gries, F. B. Schneider, A Logical Approach to Discrete Math, Springer, New York (1994), DOI: https://doi.org/10.1007/978-1-4757-3837-7en
dc.referencesD. Gries, F. B. Schneider, Adding the Everywhere Operator to Propositional Logic, Journal of Logic and Computation, vol. 8(1) (1998), pp. 119–129, DOI: https://doi.org/10.1093/logcom/8.1.119en
dc.referencesD. Hilbert, W. Ackermann, Principles of Mathematical Logic, Chelsea, New York (1950).en
dc.referencesD. Hilbert, P. Bernays, Grundlagen der Mathematik I and II, Springer, New York (1968), DOI: https://doi.org/10.1007/978-3-642-86894-8en
dc.referencesG. Japaridze, D. de Jongh, The Logic of Provability, [in:] Buss, S. R. (ed.), Handbook of Proof Theory, Elsevier Science B.V. (1998), pp. 475–550, DOI: https://doi.org/10.1016/S0049-237X(98)80022-0en
dc.referencesF. Kibedi, G. Tourlakis, A Modal Extension of Weak Generalisation Predicate Logic, Logic Journal of IGPL, vol. 14(4) (2006), pp. 591–621, DOI: https://doi.org/10.1093/jigpal/jzl025en
dc.referencesS. Kleene, Introduction to metamathematics, North-Holland, Amsterdam (1952).en
dc.referencesS. A. Kripke, A completeness theorem in modal logic, Journal of Symbolic Logic, vol. 24(1) (1959), pp. 1–14, DOI: https://doi.org/10.2307/2964568en
dc.referencesE. Mendelson, Introduction to Mathematical Logic, 3rd ed., Wadsworth & Brooks, Monterey, CA (1987), DOI: https://doi.org/10.1007/978-1-4615-7288-6en
dc.referencesF. Montagna, The predicate modal logic of provability, Notre Dame Journal of Formal Logic, vol. 25(2) (1984), pp. 179–189, DOI: https://doi.org/10.1305/ndjfl/1093870577en
dc.referencesY. Schwartz, G. Tourlakis, On the Proof-Theory of two Formalisations of Modal First-Order Logic, Studia Logica, vol. 96(3) (2010), pp. 349–373, DOI: https://doi.org/10.1007/s11225-010-9294-yen
dc.referencesY. Schwartz, G. Tourlakis, On the proof-theory of a first-order extension of GL, Logic and Logical Philosophy, vol. 23(3) (2013), pp. 329–363, DOI: https://doi.org/10.12775/llp.2013.030en
dc.referencesY. Schwartz, G. Tourlakis, A proof theoretic tool for first-order modal logic, Bulletin of the Section of Logic, vol. 42(3/4) (2013), pp. 93–110.en
dc.referencesJ. R. Shoenfield, Mathematical Logic, Addison-Wesley, Reading, MA (1967).en
dc.referencesC. Smorynski, Self-Reference and Modal Logic, Springer, New York (1985), DOI: https://doi.org/10.1007/978-1-4613-8601-8en
dc.referencesR. M. Solovay, Provability interpretations of modal logic, Israel Journal of Mathematics, vol. 25(3–4) (1976), pp. 287–304, DOI: https://doi.org/10.1007/bf02757006en
dc.referencesG. Tourlakis, Lectures in Logic and Set Theory, Volume 1: Mathematical Logic, Cambridge University Press, Cambridge (2003), DOI: https://doi.org/10.1017/CBO9780511615559en
dc.referencesG. Tourlakis, Mathematical Logic, John Wiley & Sons, Hoboken, NJ (2008), DOI: https://doi.org/10.1002/9781118032435en
dc.referencesG. Tourlakis, A new arithmetically incomplete first-order extension of GL all theorems of which have cut free proofs, Bulletin of the Section of Logic, vol. 45(1) (2016), pp. 17–31, DOI: https://doi.org/10.18778/0138-0680.45.1.02en
dc.referencesG. Tourlakis, F. Kibedi, A modal extension of first order classical logic. Part I, Bulletin of the Section of Logic, vol. 32(4) (2003), pp. 165–178.en
dc.referencesG. Tourlakis, F. Kibedi, A modal extension of first order classical logic. Part II, Bulletin of the Section of Logic, vol. 33 (2004), pp. 1–10.en
dc.referencesV. A. Vardanyan, Arithmetic complexity of predicate logics of provability and their fragments, Soviet Mathematics Doklady, vol. 34 (1986), pp. 384–387, URL: http://mi.mathnet.ru/eng/dan8607en
dc.referencesR. E. Yavorsky, On Arithmetical Completeness of First-Order Logics of Provability, Advances in Modal Logic, (2002), pp. 1–16, DOI: https://doi.org/10.1142/9789812776471_0001en
dc.contributor.authorEmailHao, Yunge - hyggs@my.yorku.ca
dc.contributor.authorEmailTourlakis, George - gt@cse.yorku.ca
dc.identifier.doi10.18778/0138-0680.2021.18
dc.relation.volume50


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0