Pokaż uproszczony rekord

dc.contributor.authorFrydrych, Małgorzata
dc.date.accessioned2022-03-29T06:22:09Z
dc.date.available2022-03-29T06:22:09Z
dc.date.issued2021-12-30
dc.identifier.issn1427-9711
dc.identifier.urihttp://hdl.handle.net/11089/41342
dc.description.abstractThe study presents the problem of complex genesis of eskers formed in N-channels on the example of an esker located near Tosie in east-central Poland. The lithofacies analysis revealed a high diversity of structural and textural characteristics of sediments in this form. The esker consists of three sedimentation units. Coarse sediments of the esker core were deposited in the subenvironment of a subglacial tunnel, as an effect of bedforms migration under hydrostatic pressure. Opening of the tunnel resulted in the forming of an open crevasse, in which the cover of the esker core sediments was accumulated. These deposits recorded a significant variability of flow energy and sedimentation mechanisms, which indicates a strong influence of the ice-sheet ablation dynamics. During the final deglaciation stage, a part of the esker was covered with diamicton. Numerous soft-sediment deformation structures were identified within the esker. The sediments were dislocated vertically to the elevation of more than 8 metres. They constitute the record of buried dead-ice masses melting in the esker core sediments. Melting of the masses resulted in vertical displacement of sediments and formation of "the dead-ice structure". The complexity of esker genesis is characteristic of postglacial areas in Poland, where most eskers were formed in subglacial N-channels. Numerous research results confirm a considerably more frequent occurrence of the facies sequence of subglacial tunnel and open crevasse in eskers formed in N-channels than R-channels. This is indicated by a much greater dissimilarity of processes during different stages of esker formation on soft bed and solid substratum.en
dc.description.abstractBadania ukazują problem złożoności genezy ozów powstających w tunelach typu N na przykładzie ozu okolic Tosi w środkowo- -wschodniej Polsce. Analiza litofacjalna wykazała duże zróżnicowanie strukturalnych i teksturalnych cech osadów tworzących formę. Oz zbudowany jest z trzech jednostek sedymentacyjnych. Gruboziarniste osady jądra ozowego powstawały w subśrodowisku tunelu subglacjalnego na skutek migracji form dna pod ciśnieniem hydrostatycznym. Otwarcie się tunelu spowodowało powstanie rozpadliny lodowej, w której następowała akumulacja jednostki pokrywającej osady jądra ozu. W osadach tych zapisała się znaczna zmienność energii przepływu oraz mechanizmów sedymentacji, co wskazuje na duży wpływ dynamiki ablacji lodowca. Podczas ostatniego etapu deglacjacji część ozu pokryta została diamiktonem. W ozie stwierdzono liczne struktury deformacyjne. Osady zostały przemieszczone pionowo na wysokość ponad 8 m. Stanowią one zapis wytapiania się pogrzebanych brył martwego lodu w osadach jądra ozu. Wytapianie się brył powodowało pionowe przemieszczanie się osadów i powstawanie tzw. dead-ice structure. Złożoność genezy ozów jest charakterystyczna dla obszarów polodowcowych Polski, gdzie większość ozów powstaje w rynnach subglacjalnych. Liczne badania potwierdzają znacznie częstsze występowanie następstwa facji subglacjalnego tunelu i otwartej rozpadliny w ozach powstających w tunelach typu N niż typu R. Wskazuje to na dużo większą odmienność procesów podczas różnych etapów formowania się ozów na nieskonsolidowanym oraz litym podłożu.pl
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Geographica Physica;20pl
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectEskeren
dc.subjectsubglacial tunnelen
dc.subjectopen crevasseen
dc.subjectglaciofluvial depositsen
dc.subjectSaalianen
dc.subjectPolanden
dc.subjectOzpl
dc.subjecttunel subglacjalnypl
dc.subjectrozpadlina lodowapl
dc.subjectosady glacifluwialnepl
dc.subjectzlodowacenie wartypl
dc.subjectPolskapl
dc.titleComplex genesis of N-channel eskers illustrated with the example of an esker near Tosie (east-central Poland)en
dc.title.alternativeZłożoność genezy ozów powstałych w tunelach typu N na przykładzie ozu okolic Tosi (środkowo-wschodnia Polska)pl
dc.typeArticle
dc.page.number13-25
dc.contributor.authorAffiliationUniversity of Lodz, Faculty of Geographical Sciences, Department of Physical Geographyen
dc.identifier.eissn2353-6063
dc.referencesAhokangas, E., Mäkinen, J., 2014. Sedimentology of an ice lobe margin esker with implications for the deglacial dynamics of the Finnish Lake District lobe trunk. Boreas 43, 90–106 https://doi.org/10.1111/bor.12023en
dc.referencesAshmore, P.E., 1991. How do gravel rivers braid? Canadian Journal of Earth Sciences 28, 326–341 https://doi.org/10.1139/e91-030en
dc.referencesBaker, V.R., 1978. Large-scale erosional and deposition features in the Channeled Scabland, [in:] Baker, V.R., Nummedal, D. (Eds.), The Channeled Scabland, 81–115.en
dc.referencesBanerjee, I., McDonald, B.C., 1975. Nature of esker sedimentation, [in:] Jopling, A.V., McDonald, B.C. (Eds.), Glaciofluvial and Glaciolacustrine Sedimentation: Society of Economic Paleontologists and Mineralogists Special Publication 23, 132–154 https://doi.org/10.2110/pec.75.23.0132en
dc.referencesBennett, M.R., Glasser, N.F., 2010. Glacial geology: Ice sheets and landforms. Second edition. Oxford, Wiley.en
dc.referencesBrennand, T.A., 1994. Macroforms, large bedforms and rythmic sedimentary sequences in subglacial eskers, south-central Ontario: Implications for esker genesis and meltwater regime. Sedimentary Geology 91, 9–55 https://doi.org/10.1016/0037-0738(94)90122-8en
dc.referencesBrennand, T.A., 2000. Deglacial meltwater drainage and glaciodynamics: Inferences from Laurentide eskers, Canada. Geomorphology 32, 263–293.en
dc.referencesBrennand, T.A., Shaw, J., 1996. The Harricana glaciofluvial complex, Abitibi region, Quebec: Its genesis and implications for meltwater regime and ice-sheet dynamics. Sedimentary Geology 102, 221–262 https://doi.org/10.1016/0037-0738(95)00069-0en
dc.referencesBuraczyński, J., Superson, J., 1992. Ozy i kemy Kotliny Hrubieszowskiej (Wyż. Lubelska), Kwartalnik Geologiczny 36 (3), 361–374.en
dc.referencesBurke, M.J., Woodward, J., Russell, A.J., Fleisher, P.J., Bailey, P.K., 2008. Controls on the sedimentary architecture of a single event englacial esker: Skeiðarárjökull, Iceland. Quaternary Science Reviews 27, 1829–1847.en
dc.referencesBurke, M.J., Woodward, J., Russell, A.J., Fleisher, P.J., 2009. Structural controls on englacial esker sedimentation: Skeiðarárjökull, Iceland. Annals of Glaciology 50, 85–92.en
dc.referencesBurke, M.J., Woodward, J., Russell, A.J., Fleisher, P.J., Bailey, P.K., 2010. The sedimentary architecture of outburst flood eskers: A comparison of groundpenetrating radar data from Bering Glacier, Alaska and Skeiðarárjökull, Iceland. Geological Society of America Bulletin 122, 1637–1645.en
dc.referencesBurke, M.J., Brennand, T.A., Sjogren, D.B., 2015. The role of sediment supply in esker formation and ice tunnel evolution. Quaternary Science Reviews 115, 50–77.en
dc.referencesCarling, P.A., 1996. Morphology, sedimentology and palaeohydraulic significance of large gravel dunes, Altai Mts, Siberia. Sedimentology 43, 647–664 https://doi.org/10.1111/j.1365-3091.1996.tb02184.xen
dc.referencesCheel, R.J., Rust, B.R., 1982. Coarse-grained facies of glaciomarine deposits near Ottawa, Canada, [in:] Davidson-Arnott, R., Nickling, W., Fahey, B.D. (Eds.), Research in Glacial, Glaciofluvial and Glaciolacustrine Systems. GeoBooks, Norwich, 279–295.en
dc.referencesClark, P.U., Walder, J.S., 1994. Subglacial drainage, eskers, and deforming beds beneath the Laurentide and Eurasian ice sheets. Geological Society of America Bulletin 106, 304–314.en
dc.referencesCosta, J.E., 1983. Paleohydraulic reconstruction of flash-flood peaks from boulder deposits in the Colorado Front Range. Geological Society of America Bulletin 94, 986–1004 https://doi.org/10.1130/0016-7606(1983)942.0.CO;2en
dc.referencesDe Geer, G.J., 1897. Om rullstensåsarnas bildningssät. Geol. Fören. Stockholm Förhand 19, 366–388.en
dc.referencesDelaney, C., 2001. Esker formation and the nature of deglaciation: The Ballymohon Esker, Central Ireland. North West Geography 1 (2), 23–33.en
dc.referencesDewald, N., Lewington, E.L.M., Livingstone, S.J., Clark, C.D., Storrar, R.D., 2021. Distribution, characteristics and formation of esker enlargements. Geomorphology 392, 107919 https://doi.org/10.1016/j.geomorph.2021.107919en
dc.referencesEvans, D.J.A., Phillips, E.R., Hiemstra, J.F., Auton, C.A., 2006. Subglacial till: Formation, sedimentary characteristics and classification. Earth-Science Reviews 78 (1–2), 115–176 https://doi.org/10.1016/j.earscirev.2006.04.001en
dc.referencesFard, A.M., 2002. Large dead-ice depressions in flat-topped eskers: Evidence ofa Preboreal jökulhlaup in the Stockholm area, Sweden. Global and Planetary Change 35 (3–4), 273–295 https://doi.org/10.1016/S0921-8181(02)00131-5en
dc.referencesFard, A.M., Gruszka, B., 2007. Subglacial conditions in a branching Saalian esker in northcentral Poland. Sedimentary Geology 193, 33–46 https://doi.org/10.1016/j.sedgeo.2006.03.029en
dc.referencesFrydrych, M., 2016. Structural and textural response to dynamics of fluvioglacial processes of the Rzymsko esker sediments, Central Poland. Geology, Geophysics & Environment 42 (4), 411–428.en
dc.referencesFrydrych, M., 2020. Formation of selected eskers and related forms of the old glacial area of the Polish Lowland in the light of geomorphological and sedimentological Research. PhD thesis, University of Lodz.en
dc.referencesGorrell, G., Shaw, J., 1991. Deposition in an esker, bead and fan complex, Lanark, Ontario, Canada. Sedimentary Geology 72, 285–314 https://doi.org/10.1016/0037-0738(91)90016-7en
dc.referencesGraham, D.J., Reid, I., Rice, S.P., 2005. Automated Sizing of Coarse-Grained Sediments: Image-Processing Procedures. Mathematical Geology 37, 1–28.en
dc.referencesGregory, J.W., 1921. The Irish Eskers. Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character 210, 115–151.en
dc.referencesGruszka, B., Van Loon, A.J., 2011. Genesis of a giant gravity-induced depression (gravifossum) in the Enköping esker, S. Sweden. Sedimentary Geology 235, 3–4, 304–313 https://doi.org/10.1016/j.sedgeo.2010.10.004en
dc.referencesHenderson, P.J., 1988. Sedimentation in an esker system influenced by bedrock topography near Kingston, Ontario. Canadian Journal of Earth Sciences 25, 987–999.en
dc.referencesHooke, R. LeB., 1984. On the role of mechanical energy in maintaining subglacial water conduits at atmospheric pressure. Journal of Glaciology 30, 180–187.en
dc.referencesHuddart, D., Bennett, M.R., Glasser, N.F. 1999. Morphology and sedimentology of a high-arctic esker system: Vegbreen, Svalbard. Boreas 28, 253–273 https://doi.org/10.1111/j.1502-3885.1999.tb00219.xen
dc.referencesHummel, D., 1874. Om Rullstenbildningar. K. Svenska Vetenskaps-Akademiens Förhandlingar 2 (11), 1–36.en
dc.referencesJaksa, Z., Rdzany Z., 2002. Sedymentologiczny zapis dynamiki deglacjacji Wysoczyzny Rawskiej na przykładzie Wału Rylska. Acta Universitatis Nicolai Copernici, Geografia, XXXII, Nauki Matematyczno-Przyrodnicze 109, 169–181.en
dc.referencesLewington, E.L., Livingstone, S.J., Clark, C.D., Sole, A.J., Storrar, D.R., 2020a. Large-scale integrated subglacial drainage around the former Keewatin Ice Divide, Canada reveals interaction between distributed and channelized systems. The Cryosphere Discussion [In press] https://doi.org/10.5194/tc-2020-10en
dc.referencesLewington, E.L., Livingstone, S.J., Clark, C.D., Sole, A.J., Storrar, R., 2020b. A model for interaction between conduits and surrounding hydraulically connected distributed drainage based on geomorphological evidence from Keewatin. The Cryosphere 14, 2949–2976 https://doi.org/10.5194/tc-14-2949-2020en
dc.referencesLivingstone, S.J., Lewington, E.L., Clark, C.D., Storrar, D.R., Sole, A.J., McMartin, I., Dewald, N., Ng, Felix, 2020. A quasi-annual record of time-transgressive esker formation: Implications for ice-sheet reconstruction and subglacial hydrology. The Cryosphere 14, 1989–2004.en
dc.referencesLundqvist, J., 1997. Structure and rhythmic pattern of glaciofluvial deposits north of Lake Vänern, south-central Sweden. Boreas 26, 127–140 https://doi.org/10.1111/j.1365-3091.1975.tb00290.xen
dc.referencesMaizels, J.K., 1989. Sedimentology, paleoflow dynamics and flood history of jökulhlaup deposits: Paleohydrology of Holocene sediment sequences in southern Iceland sandur deposits. Journal of Sedimentary Petrology 59, 204–223.en
dc.referencesMaizels, J.K., 1997. Jökulhlaup deposits in proglacial areas. Quaternary Science Reviews 16, 793–819 https://doi.org/10.1016/S0277-3791(97)00023-1en
dc.referencesMarks, L., Dzierżek, J., Janiszewski, R., Kaczorowski, J., Lindner, L., Majecka, A., Makos, M., Szymanek, M., Tołoczko-Pasek, A., Woronko, B., 2016. Quaternary stratigraphy and paleogeography of Poland. Acta Geologica Polonica 66 (3), 403–427.en
dc.referencesMäkinen, J., 2003. Time-transgressive deposits of repeated depositional sequences within interlobate glaciofluvial (esker) sediments in Köyliö, SW Finland. Sedimentology 50, 327–360.en
dc.referencesMiall, A.D., 1977. A review of the braided-river depositional environment. Earth-Science Reviews 13, 1–62 https://doi.org/10.1016/0012-8252(77)90055-1en
dc.referencesMichalska, Z., 1969. Problems of the origin of eskers based on the examples from Central Poland. Geographia Polonica 16, 105–119.en
dc.referencesNemec, W., Steel, R.J., 1984. Alluvial and coastal conglomerates: Their significant features and some comments on gravelly mass-flow deposits, [in:] Koster, E.H., Steel, R.J. (Eds.), Sedimentology of Gravels and Conglomerates. Canadian Society of Petroleum Geologists, Memoir 10, 1–31.en
dc.referencesNye, J.F., 1973. Water at the bed of the glacier: Symposium on the Hydrology of Glaciers. International Association of Sciencific Hydrology, Publications, Cambridge 95, 189–194.en
dc.referencesNye, J.F., 1976. Water flow in glaciers: Jökulhlaups, tunnels and veins. Journal of Glaciology 17, 179–207 https://doi.org/10.3189/S002214300001354Xen
dc.referencesPisarska-Jamroży, M., Zieliński, T., 2012. Specific erosional and depositional processes in a Pleistocene subglacial tunnel in the Wielkopolska region, Poland. Geografiska Annaler, Series A, Physical Geography 94, 429–443 https://doi.org/10.1111/j.1468-0459.2012.00466.xen
dc.referencesRingrose, S., 1982. Depositional processes in the development of eskers in Manitoba, [in:] Davidson-Arnott, R., Nickling, W., Fahey, B.D. (Eds.), Research in glacial, glacio-fluvial and glaciolacustrine systems. Proceedings of the 6th Guelph Symposium on Geomorphology (1980). Geo Books, Norwich, 117–137.en
dc.referencesRoman, M., 2016. Sukcesja osadowa i etapy formowania ozu gostynińskiego, Równina Kutnowska, centralna Polska. Annales Universitatis Mariae Curie-Sklodowska, Sectio B – Geographia, Geologia, Mineralogia et Petrographia 71 (1), 9–27.en
dc.referencesRöthlisberger, H., 1972. Water pressure in intra and subglacial channels. Journal of Glaciology 11, 177–203.en
dc.referencesRussell, A. J., Knudsen, Ó., 1999. An ice-contact rhythmite (turbidite) succession deposited during the November 1996 catastrophic outburst flood (jokulhlaup), Skeidararjokull, Iceland. Sedimentary Geology 127 (1–2), 1–10 https://doi.org/10.1016/S0037-0738(99)00024-Xen
dc.referencesRussell, A.J., Knudsen, Ó., 2002. The effect of glacier-outburst flood flow dynamic on ice-contact deposits: November 1996 jökulhlaup, Skeidarársandur, Iceland, [in:] Flood and megaflood processes and deposits: Recent and ancient examples. International Association of Sedimentologists, Special Publication 32, 67–83 https://doi.org/10.1002/9781444304299.ch5en
dc.referencesRussell, A.J., Knudsen, Ó., Fay, H., Marren, P.M., Heinz, J., Tronicke, J., 2001. Morphology and sedimentology of a giant supraglacial, ice-walled, jökulhlaup channel, Skeidarárjökull, Iceland: Implications for esker genesis. Global and Planetary Change 28, 193–216 https://doi.org/10.1016/S0921-8181(00)00073-4en
dc.referencesSalamon, T., 2009. Subglacjalne pochodzenie przełomowych dolin zachodniej części progu środkowotriasowego i ciągu pagórów okolic Gogolina. Przegląd Geologiczny 57 (3), 243–251.en
dc.referencesSaunderson, H.C., 1975. Sedimentology of the Brampton esker and its associated deposits: An empirical test of theory, [in:] Jopling, A.V., McDonald, B.C. (Eds.), Glaciofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists, Special Publication 23, 155–176 https://doi.org/10.2110/pec.75.23.0155en
dc.referencesSaunderson, H.C., 1977. The sliding bed facies in esker sands and gravels: A criterion for full-pipe (tunnel) flow? Sedimentology 24, 623–638.en
dc.referencesSharpe, D.R, Lesemann, J.E., Knight, R.D., Kjarsgaard, B.A., 2021. Regional stagnation of the western Keewatin ice sheet and the significance of melt water corridors and eskers, anorthern Canada. Canadian Journal of Earth Sciences 58(10), 1005–1026.en
dc.referencesShaw, J., 1972. Sedimentation in the ice-contact environment, with examples from Shropshire (England). Sedimentology 18, 23–62 https://doi.org/10.1111/j.1365-3091.1972.tb00002.xen
dc.referencesShreve, R.L., 1985. Esker characteristics in term of glacial physics, Katahdin esker system, Maine. Geological Society of America Bulletin 96, 639–646.en
dc.referencesShulmeister, J., 1989. Flood deposits in the Tweet esker (southern Ontario, Canada). Sedimentary Geology 65, 153–163.en
dc.referencesSmith, G.A., 1986. Coarse-grained and nonmarine volcaniclastic sediment: Terminology and depositional processes. Geological Society of America Bulletin 97, 1–10 https://doi.org/10.1130/0016-7606(1986)972.0.CO;2en
dc.referencesStorrar, R.D., Evans, D.J.A., Stokes, C.R., Ewertowski, M., 2015. Controls on the location, morphology and evolution of complex esker systems at decadal timescales, Breiðamerkurjökull, southeast Iceland. Earth Surface Processes and Landforms 40, 1421–1438.en
dc.referencesStorrar, R.D., Stokes, C.R., Evans, D.J.A., 2014a. Increased channelization of subglacial drainage during deglaciation of the Laurentide Ice Sheet. Geology 42, 239–242.en
dc.referencesStorrar, R.D., Stokes, C.R., Evans, D.J.A., 2014b. Morphometry and pattern of a large sample (>20,000) of Canadian eskers and implications for subglacial drainage beneath ice sheets. Quaternary Science Reviews 105, 1–25.en
dc.referencesVan Loon, A.J., 2009. Soft-sediment deformation structures in siliciclastic sediments: An overview. Geologos 15 (1), 3–55 https://doi.org/10.1016/j.sedgeo.2013.02.001en
dc.referencesWilliams, G.E., 1983. Palaeohydrological methods and some examples from Swedish fluvial environments: I. Cobble and boulder deposits. Geografiska Annaler 65A, 227–243 https://doi.org/10.2307/520941en
dc.referencesWrotek, K., 1998. Szczegółowa mapa geologiczna Polski 1: 50 000, Arkusz Kosów Lacki (454). Państwowy Instytut Geologiczny, Warszawa.en
dc.referencesWrotek, K., 2002. Objaśnienia do Szczegółowej mapy geologicznej Polski 1:50 000, Arkusz Kosów Lacki (454). Państwowy Instytut Geologiczny, Warszawa, 1–36.en
dc.referencesWysota, W., 1990. Geneza ozu nowodworskiego w świetle analizy strukturalnej jego osadów. Acta Universitatis Nicolai Copernici, Geografia 22, Toruń, 3–22.en
dc.referencesZieliński, T., Pisarska-Jamroży, M., 2012. Jakie cechy litologiczne osadów warto kodować, a jakie nie? Przegląd Geologiczny 60 (7), 387–397.en
dc.contributor.authorEmailmalgorzata.frydrych@geo.uni.lodz.pl
dc.identifier.doi10.18778/1427-9711.20.02
dc.relation.volume20


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0