Pokaż uproszczony rekord

dc.contributor.authorBraüner, Torben
dc.date.accessioned2022-08-25T13:00:35Z
dc.date.available2022-08-25T13:00:35Z
dc.date.issued2022-01-07
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/42921
dc.description.abstractThis paper is about non-labelled proof-systems for hybrid logic, that is, proofsystems where arbitrary formulas can occur, not just satisfaction statements. We give an overview of such proof-systems, focusing on analytic systems: Natural deduction systems, Gentzen sequent systems and tableau systems. We point out major results and we discuss a couple of striking facts, in particular that nonlabelled hybrid-logical natural deduction systems are analytic, but this is not proved in the usual way via step-by-step normalization of derivations.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;2en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjecthybrid logicen
dc.subjectnatural deduction systemsen
dc.subjectsequent systemsen
dc.subjectnormalizationen
dc.subjectcut-eliminationen
dc.subjectanalycityen
dc.titleAnalytic Non-Labelled Proof-Systems for Hybrid Logic: Overview and a couple of striking factsen
dc.typeOther
dc.page.number143-162
dc.contributor.authorAffiliationRoskilde University, Department of People and Technology, Building 10.1, Universitetsvej 1, P.O. Box 260, DK-4000 Roskilde, Denmarken
dc.identifier.eissn2449-836X
dc.referencesM. Baaz, A. Leitsch, Methods of Cut-Elimination, vol. 34 of Trends in Logic Series, Springer, Dordrecht (2011), DOI: https://doi.org/10.1007/978-94-007-0320-9en
dc.referencesG. Bierman, V. de Paiva, On an Intuitionistic Modal Logic, Studia Logica, vol. 65 (2000), pp. 383–416, DOI: https://doi.org/10.1023/A:1005291931660en
dc.referencesP. Blackburn, T. Bolander, T. Braüner, K. Jørgensen, Completeness and Termination for a Seligman-style Tableau System, Journal of Logic and Computation, vol. 27(1) (2017), pp. 81–107, DOI: https://doi.org/10.1093/logcom/exv052en
dc.referencesT. Braüner, Two Natural Deduction Systems for Hybrid Logic: A Comparison, Journal of Logic, Language and Information, vol. 13 (2004), pp. 1–23, DOI: https://doi.org/10.1023/A:1026187215321en
dc.referencesT. Braüner, Hybrid Logic, [in:] E. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Stanford University (2005), URL: http://plato.stanford.edu/entries/logic-hybrid, substantive revision in 2017.en
dc.referencesT. Braüner, Hybrid Logic and its Proof-Theory, vol. 37 of Applied Logic Series, Springer, Dordrecht (2011), DOI: https://doi.org/10.1007/978-94-007-0002-4en
dc.referencesT. Braüner, Hybrid-Logical Reasoning in the Smarties and Sally-Anne Tasks, Journal of Logic, Language and Information, vol. 23 (2014), pp. 415–439, DOI: https://doi.org/10.1007/s10849-014-9206-zen
dc.referencesT. Braüner, I. Polyanskaya, P. Blackburn, A logical investigation of false-belief tasks, [in:] Proceedings of the 40th Annual Meeting of the Cognitive Science Society, Cognitive Science Society, Madison, Wisconsin, USA (2018), pp. 45–46, URL: https://cogsci.mindmodeling.org/2018/papers/0023/0023.pdfen
dc.referencesM. Fitting, Modal Proof Theory, [in:] P. Blackburn, J. van Benthem, F. Wolter (eds.), Handbook of Modal Logic, vol. 3 of Studies in Logic and Practical Reasoning, Elsevier, Amsterdam (2007), pp. 85–138, DOI: https://doi.org/10.1016/S1570-2464(07)80005-Xen
dc.referencesA. From, Synthetic Completeness for a Terminating Seligman-Style Tableau System, [in:] U. de’Liguoro, S. Berardi, T. Altenkirch (eds.), 26th International Conference on Types for Proofs and Programs (TYPES 2020), vol. 188 of Leibniz International Proceedings in Informatics (LIPIcs), Leibniz-Zentrum für Informatik, Schloss Dagstuhl (2021), pp. 5:1–5:17, DOI: https://doi.org/10.4230/LIPIcs.TYPES.2020.5en
dc.referencesA. From, P. Blackburn, J. Villadsen, Formalizing a Seligman-Style Tableau System for Hybrid Logic, [in:] N. Peltier, V. Sofronie-Stokkermans (eds.), Proceedings of 10th International Joint Conference on Automated Reasoning (IJCAR), vol. 12166 of Lecture Notes in Computer Science, Springer-Verlag, Cham (2020), pp. 474–482, DOI: https://doi.org/10.1007/978-3-030-51074-9_27en
dc.referencesJ.-Y. Girard, Linear Logic, Theoretical Computer Science, vol. 50(1) (1987), pp. 1–102, DOI: https://doi.org/10.1016/0304-3975(87)90045-4en
dc.referencesJ.-Y. Girard, Y. Lafont, P. Taylor, Proofs and Types, vol. 7 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge (1989).en
dc.referencesA. Indrzejczak, Natural Deduction, Hybrid Systems and Modal Logics, vol. 30 of Trends in Logic Series, Springer, Dordrecht (2010), DOI: https://doi.org/10.1007/978-90-481-8785-0en
dc.referencesK. Jørgensen, P. Blackburn, T. Bolander, T. Braüner, Completeness Proofs for Seligman-style Tableau Systems, [in:] L. Beklemishev, S. Demri (eds.), Proceedings of Advances in Modal Logic 2016, vol. 11 of Advances in Modal Logic, College Publications, Rickmansworth (2016), pp. 302–321, DOI: https://doi.org/10.1007/978-3-030-51074-9_27en
dc.referencesH. Kushida, M. Okada, A Proof-Theoretic Study of the Correspondence of Hybrid Logic and Classical Logic, Journal of Logic, Language and Information, vol. 16 (2007), pp. 35–61, DOI: https://doi.org/10.1007/s10849-006-9023-0en
dc.referencesD. Prawitz, Natural Deduction. A Proof-Theoretical Study, Almqvist and Wiksell, Stockholm (1965).en
dc.referencesD. Prawitz, Proofs and the Meaning and Completeness of the Logical Constants, [in:] J. Hintikka, I. Niiniluoto, E. Saarinen (eds.), Essays on Mathematical and Philosophical Logic, vol. 122 of Synthese Library (Studies in Epistemology, Logic, Methodology, and Philosophy of Science), Springer, Dordrecht (1979), pp. 25–40, DOI: https://doi.org/10.1007/978-94-009-9825-4_2en
dc.referencesL. Rips, Logical Approaches to Human Deductive Reasoning, [in:] J. Adler, L. Rips (eds.), Reasoning: Studies of Human Inference and Its Foundations, Cambridge University Press, Cambridge (2008), pp. 187–205.en
dc.referencesJ. Seligman, The Logic of Correct Description, [in:] M. de Rijke (ed.), Advances in Intensional Logic, vol. 7 of Applied Logic Series, Springer, Dordrecht (1997), pp. 107 – 135, DOI: https://doi.org/10.1007/978-94-015-8879-9_5en
dc.referencesJ. Seligman, Internalization: The Case of Hybrid Logics, Journal of Logic and Computation, vol. 11(5) (2001), pp. 671–689, DOI: https://doi.org/10.1093/logcom/11.5.671en
dc.referencesA. Simpson, The Proof Theory and Semantics of Intuitionistic Modal logic, Ph.D. thesis, University of Edinburgh (1994).en
dc.referencesH. Wansing, Sequent Systems for Modal Logics, [in:] D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, 2nd ed., vol. 8, Springer, Dordrecht (2002), pp. 61–145, DOI: https://doi.org/10.1007/978-94-010-0387-2_2en
dc.contributor.authorEmailtorben@ruc.dk
dc.identifier.doi10.18778/0138-0680.2022.02
dc.relation.volume51


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0