Show simple item record

dc.contributor.authorGordeev, Lew
dc.contributor.authorHaeusler, Edward Hermann
dc.date.accessioned2022-08-25T13:00:37Z
dc.date.available2022-08-25T13:00:37Z
dc.date.issued2022-01-07
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/42924
dc.description.abstractIn our previous work we proved the conjecture NP = PSPACE by advanced proof theoretic methods that combined Hudelmaier’s cut-free sequent calculus for minimal logic (HSC) with the horizontal compressing in the corresponding minimal Prawitz-style natural deduction (ND). In this Addendum we show how to prove a weaker result NP = coNP without referring to HSC. The underlying idea (due to the second author) is to omit full minimal logic and compress only “naive” normal tree-like ND refutations of the existence of Hamiltonian cycles in given non-Hamiltonian graphs, since the Hamiltonian graph problem in NPcomplete. Thus, loosely speaking, the proof of NP = coNP can be obtained by HSC-elimination from our proof of NP = PSPACE.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;2en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectgraph theoryen
dc.subjectnatural deductionen
dc.subjectcomputational complexityen
dc.titleProof Compression and NP Versus PSPACE II: Addendumen
dc.typeOther
dc.page.number197-205
dc.contributor.authorAffiliationGordeev, Lew - University of Tübingen, Department of Computer Science, Nedlitzer Str. 4a, 14612 Falkenseeen
dc.contributor.authorAffiliationHaeusler, Edward Hermann - Pontificia Universidade Católica do Rio de Janeiro – RJ, Department of Informatics, Rua Marques de São Vicente, 224, Gávea, Rio de Janeiro, Brazilen
dc.identifier.eissn2449-836X
dc.referencesS. Arora, B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press (2009).en
dc.referencesL. Gordeev, E. H. Haeusler, Proof Compression and NP Versus PSPACE, Studia Logica, vol. 107(1) (2019), pp. 55–83, DOI: https://doi.org/10.1007/s11225-017-9773-5en
dc.referencesL. Gordeev, E. H. Haeusler, Proof Compression and NP Versus PSPACE II, Bulletin of the Section of Logic, vol. 49(3) (2020), pp. 213–230, DOI: https://doi.org/10.18778/0138-0680.2020.16en
dc.referencesE. H. Haeusler, Propositional Logics Complexity and the Sub-Formula Property, [in:] Proceedings of the Tenth International Workshop on Developments in Computational Models DCM (2014), URL: https://arxiv.org/abs/1401.8209v3en
dc.referencesJ. Hudelmaier, An O(nlogn)-space decision procedure for intuitionistic propositional logic, Journal of Logic and Computation, vol. 3 (1993), pp. 1–13, DOI: https://doi.org/10.1093/logcom/3.1.63en
dc.referencesD. Prawitz, Natural deduction: A proof-theoretical study, Almqvist & Wiksell (1965).en
dc.referencesR. Statman, Intuitionistic propositional logic is polynomial-space complete, Theoretical Computer Science, vol. 9 (1979), pp. 67–72, DOI: https://doi.org/10.1016/0304-3975(79)90006-9en
dc.contributor.authorEmailGordeev, Lew - lew.gordeew@uni-tuebingen.de
dc.contributor.authorEmailHaeusler, Edward Hermann - hermann@inf.puc-rio.br
dc.identifier.doi10.18778/0138-0680.2022.01
dc.relation.volume51


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0