dc.contributor.author | Gordeev, Lew | |
dc.contributor.author | Haeusler, Edward Hermann | |
dc.date.accessioned | 2022-08-25T13:00:37Z | |
dc.date.available | 2022-08-25T13:00:37Z | |
dc.date.issued | 2022-01-07 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/42924 | |
dc.description.abstract | In our previous work we proved the conjecture NP = PSPACE by advanced proof theoretic methods that combined Hudelmaier’s cut-free sequent calculus for minimal logic (HSC) with the horizontal compressing in the corresponding minimal Prawitz-style natural deduction (ND). In this Addendum we show how to prove a weaker result NP = coNP without referring to HSC. The underlying idea (due to the second author) is to omit full minimal logic and compress only “naive” normal tree-like ND refutations of the existence of Hamiltonian cycles in given non-Hamiltonian graphs, since the Hamiltonian graph problem in NPcomplete. Thus, loosely speaking, the proof of NP = coNP can be obtained by HSC-elimination from our proof of NP = PSPACE. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;2 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | graph theory | en |
dc.subject | natural deduction | en |
dc.subject | computational complexity | en |
dc.title | Proof Compression and NP Versus PSPACE II: Addendum | en |
dc.type | Other | |
dc.page.number | 197-205 | |
dc.contributor.authorAffiliation | Gordeev, Lew - University of Tübingen, Department of Computer Science, Nedlitzer Str. 4a, 14612 Falkensee | en |
dc.contributor.authorAffiliation | Haeusler, Edward Hermann - Pontificia Universidade Católica do Rio de Janeiro – RJ, Department of Informatics, Rua Marques de São Vicente, 224, Gávea, Rio de Janeiro, Brazil | en |
dc.identifier.eissn | 2449-836X | |
dc.references | S. Arora, B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press (2009). | en |
dc.references | L. Gordeev, E. H. Haeusler, Proof Compression and NP Versus PSPACE, Studia Logica, vol. 107(1) (2019), pp. 55–83, DOI: https://doi.org/10.1007/s11225-017-9773-5 | en |
dc.references | L. Gordeev, E. H. Haeusler, Proof Compression and NP Versus PSPACE II, Bulletin of the Section of Logic, vol. 49(3) (2020), pp. 213–230, DOI: https://doi.org/10.18778/0138-0680.2020.16 | en |
dc.references | E. H. Haeusler, Propositional Logics Complexity and the Sub-Formula Property, [in:] Proceedings of the Tenth International Workshop on Developments in Computational Models DCM (2014), URL: https://arxiv.org/abs/1401.8209v3 | en |
dc.references | J. Hudelmaier, An O(nlogn)-space decision procedure for intuitionistic propositional logic, Journal of Logic and Computation, vol. 3 (1993), pp. 1–13, DOI: https://doi.org/10.1093/logcom/3.1.63 | en |
dc.references | D. Prawitz, Natural deduction: A proof-theoretical study, Almqvist & Wiksell (1965). | en |
dc.references | R. Statman, Intuitionistic propositional logic is polynomial-space complete, Theoretical Computer Science, vol. 9 (1979), pp. 67–72, DOI: https://doi.org/10.1016/0304-3975(79)90006-9 | en |
dc.contributor.authorEmail | Gordeev, Lew - lew.gordeew@uni-tuebingen.de | |
dc.contributor.authorEmail | Haeusler, Edward Hermann - hermann@inf.puc-rio.br | |
dc.identifier.doi | 10.18778/0138-0680.2022.01 | |
dc.relation.volume | 51 | |