dc.contributor.author | Khan, Faiz Muhammad | |
dc.contributor.author | Khan, Imran | |
dc.contributor.author | Ahmad, Waqas | |
dc.date.accessioned | 2022-08-25T13:00:38Z | |
dc.date.available | 2022-08-25T13:00:38Z | |
dc.date.issued | 2022-06-08 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/42925 | |
dc.description.abstract | In this paper, we utilized triangular conorms (S-norm). The essence of using S-norm is that the similarity order does not change using different norms. In fact, we are investigating for a new conception for calculating the similarity of two Fermatean fuzzy sets. For this purpose, utilizing an S-norm, we first present a formula for calculating the similarity of two Fermatean fuzzy values, so that they are truthful in similarity properties. Following that, we generalize a formula for calculating the similarity of the two Fermatean fuzzy sets which prove truthful in similarity conditions. Finally, various numerical examples have been presented to elaborate this method. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;2 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | Fermatean fuzzy set | en |
dc.subject | similarity measure | en |
dc.subject | S-similarity measure | en |
dc.title | A Benchmark Similarity Measures for Fermatean Fuzzy Sets | en |
dc.type | Other | |
dc.page.number | 207-226 | |
dc.contributor.authorAffiliation | Khan, Faiz Muhammad - University of Swat, Department of Mathematics and Statistics, Sector-D, Kanju township, Swat, Khyber Pakhtunkhwa, Pakistan | en |
dc.contributor.authorAffiliation | Khan, Imran - University of Swat, Department of Mathematics and Statistics, Sector-D, Kanju township, Swat, Khyber Pakhtunkhwa, Pakistan | en |
dc.contributor.authorAffiliation | Ahmad, Waqas - University of Swat, Department of Mathematics and Statistics, Sector-D, Kanju township, Swat, Khyber Pakhtunkhwa, Pakistan | en |
dc.identifier.eissn | 2449-836X | |
dc.references | M. Akram, G. Shahzadi, A. A. H. Ahmadini, Decision-making framework for an effective sanitizer to reduce COVID-19 under Fermatean fuzzy environment, Journal of Mathematics, vol. 2020 (2020), DOI: https://doi.org/10.1155/2020/3263407. | en |
dc.references | K. T. Atanassov, Intuitionistic fuzzy sets, Springer, Dordrecht, chap. Intuitionistic fuzzy sets (1999), pp. 1–137, DOI: https://doi.org/10.1007/978-3-7908-1870-3_1. | en |
dc.references | S. B. Aydemir, S. Yilmaz Gunduz, Fermatean fuzzy TOPSIS method with dombi aggregation operators and its application in multi-criteria decision making, Journal of Intelligent & Fuzzy Systems, vol. 39(1) (2020), pp. 851–869, DOI: https://doi.org/10.3233/JIFS-191763. | en |
dc.references | V. Chinnadurai, G. Thirumurugan, M. Umamaheswari, Some Properties and Operations of Spherical Fermatean Fuzzy Matrices, European Journal of Molecular & Clinical Medicine, vol. 7(8), p. 2020, URL: https://ejmcm.com/article_7745.html. | en |
dc.references | Z. Deng, J. Wang, Evidential Fermatean fuzzy multicriteria decision-making based on Fermatean fuzzy entropy, International Journal | en |
dc.references | of Intelligent Systems, vol. 36(10) (2021), pp. 5866–5886, DOI: https://doi.org/10.1002/int.22534. | en |
dc.references | M. A. Firozja, B. Agheli, E. B. Jamkhaneh, A new similarity measure for Pythagorean fuzzy sets, Complex & Intelligent Systems, vol. 6 (2020), pp. 67–74, DOI: https://doi.org/10.1007/s40747-019-0114-3. | en |
dc.references | R. Fullér, Neural fuzzy systems, Åbo Academi University (1995), URL: https://uni-obuda.hu/users/fuller.robert/ln1.pdf, lecture notes. | en |
dc.references | H. Garg, G. Shahzadi, M. Akram, Decision-making analysis based on Fermatean fuzzy Yager aggregation operators with application in COVID-19 testing facility, Mathematical Problems in Engineering, vol. 2020 (2020), DOI: https://doi.org/10.1155/2020/7279027. | en |
dc.references | S. Gül, Fermatean fuzzy set extensions of SAW, ARAS, and VIKOR with applications in COVID-19 testing laboratory selection problem, Expert Systems, vol. 38(8) (2021), p. e12769, DOI: https://doi.org/10.1111/exsy.12769. | en |
dc.references | A. Hadi, W. Khan, A. Khan, A novel approach to MADM problems using Fermatean fuzzy Hamacher aggregation operators, International Journal of Intelligent Systems, vol. 36(7) (2021), pp. 3464–3499, DOI: https://doi.org/10.1002/int.22423. | en |
dc.references | A. Jan, A. Khan, W. Khan, M. Afridi, A novel approach to MADM problems using Fermatean fuzzy Hamacher prioritized aggregation operators, Soft Computing, vol. 25(22) (2021), pp. 13897–13910, DOI: https://doi.org/10.1007/s00500-021-06308-w. | en |
dc.references | D. Liu, Y. Liu, X. Chen, Fermatean fuzzy linguistic set and its application in multicriteria decision making, International Journal of | en |
dc.references | Intelligent Systems, vol. 34(5) (2019), pp. 878–894, DOI: https://doi.org/10.1002/int.22079. | en |
dc.references | D. Liu, Y. Liu, L. Wang, Distance measure for Fermatean fuzzy linguistic term sets based on linguistic scale function: An illustration of the TODIM and TOPSIS methods, International Journal of Intelligent Systems, vol. 34(11) (2019), pp. 2807–2834, DOI: https://doi.org/10.1002/int.22162. | en |
dc.references | A. R. Mishra, P. Rani, K. Pandey, Fermatean fuzzy CRITIC-EDAS approach for the selection of sustainable third-party reverse logistics providers using improved generalized score function, Journal of Ambient Intelligence and Humanized Computing, vol. 13(1) (2022), pp. 295–311, DOI: https://doi.org/10.1007/s12652-021-02902-w. | en |
dc.references | L. Sahoo, Some score functions on Fermatean fuzzy sets and its application to bride selection based on TOPSIS method, International Journal of Fuzzy System Applications, vol. 10(3) (2021), pp. 18–29, DOI: https://doi.org/10.4018/IJFSA.2021070102. | en |
dc.references | V. Salsabeela, S. J. John, TOPSIS techniques on Fermatean fuzzy soft sets, [in:] AIP conference proceedings, vol. 2336, AIP Publishing LLC (2021), p. 040022, DOI: https://doi.org/10.1063/5.0045914. | en |
dc.references | T. Senapati, R. R. Yager, Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision-making methods, Engineering Applications of Artificial Intelligence, vol. 85 (2019), pp. 112–121, DOI: https://doi.org/10.1016/j.engappai.2019.05.012. | en |
dc.references | T. Senapati, R. R. Yager, Some new operations over Fermatean fuzzy numbers and application of Fermatean fuzzy WPM in multiple criteria decision making, Informatica, vol. 30(2) (2019), pp. 391–412. | en |
dc.references | T. Senapati, R. R. Yager, Fermatean fuzzy sets, Journal of Ambient Intelligence and Humanized Computing, vol. 11(2) (2020), pp. 663–674, DOI: https://doi.org/10.1007/s12652-019-01377-0. | en |
dc.references | D. Sergi, I. U. Sari, Fuzzy capital budgeting using fermatean fuzzy sets, [in:] International Conference on Intelligent and Fuzzy Systems, Springer (2020), pp. 448–456, DOI: https://doi.org/10.1007/978-3-030-51156-2_52. | en |
dc.references | D. Sergi, I. U. Sari, T. Senapati, Extension of capital budgeting techniques using interval-valued Fermatean fuzzy sets, Journal of | en |
dc.references | Intelligent & Fuzzy Systems, (Preprint) (2022), pp. 1–12, DOI: https://doi.org/10.3233/JIFS-219196. | en |
dc.references | I. Silambarasan, Fermatean fuzzy matrices, TWMS Journal of Applied and Engineering Mathematics, (2020), accepted. | en |
dc.references | R. Verma, A Decision-Making Approach Based on New Aggregation Operators under Fermatean Fuzzy Linguistic Information Environment, Axioms, vol. 10(2) (2021), DOI: https://doi.org/10.3390/axioms10020113. | en |
dc.references | R. R. Yager, Pythagorean fuzzy subsets, [in:] 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), IEEE (2013), pp. 57–61, DOI: https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375. | en |
dc.references | Z. Yang, H. Garg, X. Li, Differential Calculus of Fermatean Fuzzy Functions: Continuities, Derivatives, and Differentials, International | en |
dc.references | Journal of Compututational Intelligence Systems, vol. 14(1) (2021), pp. 282–294, DOI: https://doi.org/10.2991/ijcis.d.201215.001. | en |
dc.references | L. A. Zadeh, Fuzzy sets, [in:] G. J. Klear, B. Yuan (eds.), Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A. Zadeh, | en |
dc.references | vol. 6 of Advances in Fuzzy Systems – Applications and Theory, World Scientific (1996), pp. 394–432, DOI: https://doi.org/10.1142/9789814261302_0001. | en |
dc.references | Q. Zhang, J. Hu, J. Feng, A. Liu, Multiple criteria decision making method based on the new similarity measures of Pythagorean fuzzy set, Journal of Intelligent & Fuzzy Systems, vol. 39(1) (2020), pp. 809–820, DOI: https://doi.org/10.3233/JIFS-191723. | en |
dc.references | X. Zhang, A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making, International Journal of Intelligent Systems, vol. 31(6) (2016), pp. 593–611, DOI: https://doi.org/10.1002/int.21796. | en |
dc.contributor.authorEmail | Khan, Faiz Muhammad - drfaiz@uswat.edu.pk | |
dc.contributor.authorEmail | Khan, Imran - ispi2741@gmail.com | |
dc.contributor.authorEmail | Ahmad, Waqas - waqaskahn546@gmail.com | |
dc.identifier.doi | 10.18778/0138-0680.2022.08 | |
dc.relation.volume | 51 | |