Pokaż uproszczony rekord

dc.contributor.authorKhan, Faiz Muhammad
dc.contributor.authorKhan, Imran
dc.contributor.authorAhmad, Waqas
dc.date.accessioned2022-08-25T13:00:38Z
dc.date.available2022-08-25T13:00:38Z
dc.date.issued2022-06-08
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/42925
dc.description.abstractIn this paper, we utilized triangular conorms (S-norm). The essence of using S-norm is that the similarity order does not change using different norms. In fact, we are investigating for a new conception for calculating the similarity of two Fermatean fuzzy sets. For this purpose, utilizing an S-norm, we first present a formula for calculating the similarity of two Fermatean fuzzy values, so that they are truthful in similarity properties. Following that, we generalize a formula for calculating the similarity of the two Fermatean fuzzy sets which prove truthful in similarity conditions. Finally, various numerical examples have been presented to elaborate this method.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;2en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectFermatean fuzzy seten
dc.subjectsimilarity measureen
dc.subjectS-similarity measureen
dc.titleA Benchmark Similarity Measures for Fermatean Fuzzy Setsen
dc.typeOther
dc.page.number207-226
dc.contributor.authorAffiliationKhan, Faiz Muhammad - University of Swat, Department of Mathematics and Statistics, Sector-D, Kanju township, Swat, Khyber Pakhtunkhwa, Pakistanen
dc.contributor.authorAffiliationKhan, Imran - University of Swat, Department of Mathematics and Statistics, Sector-D, Kanju township, Swat, Khyber Pakhtunkhwa, Pakistanen
dc.contributor.authorAffiliationAhmad, Waqas - University of Swat, Department of Mathematics and Statistics, Sector-D, Kanju township, Swat, Khyber Pakhtunkhwa, Pakistanen
dc.identifier.eissn2449-836X
dc.referencesM. Akram, G. Shahzadi, A. A. H. Ahmadini, Decision-making framework for an effective sanitizer to reduce COVID-19 under Fermatean fuzzy environment, Journal of Mathematics, vol. 2020 (2020), DOI: https://doi.org/10.1155/2020/3263407.en
dc.referencesK. T. Atanassov, Intuitionistic fuzzy sets, Springer, Dordrecht, chap. Intuitionistic fuzzy sets (1999), pp. 1–137, DOI: https://doi.org/10.1007/978-3-7908-1870-3_1.en
dc.referencesS. B. Aydemir, S. Yilmaz Gunduz, Fermatean fuzzy TOPSIS method with dombi aggregation operators and its application in multi-criteria decision making, Journal of Intelligent & Fuzzy Systems, vol. 39(1) (2020), pp. 851–869, DOI: https://doi.org/10.3233/JIFS-191763.en
dc.referencesV. Chinnadurai, G. Thirumurugan, M. Umamaheswari, Some Properties and Operations of Spherical Fermatean Fuzzy Matrices, European Journal of Molecular & Clinical Medicine, vol. 7(8), p. 2020, URL: https://ejmcm.com/article_7745.html.en
dc.referencesZ. Deng, J. Wang, Evidential Fermatean fuzzy multicriteria decision-making based on Fermatean fuzzy entropy, International Journalen
dc.referencesof Intelligent Systems, vol. 36(10) (2021), pp. 5866–5886, DOI: https://doi.org/10.1002/int.22534.en
dc.referencesM. A. Firozja, B. Agheli, E. B. Jamkhaneh, A new similarity measure for Pythagorean fuzzy sets, Complex & Intelligent Systems, vol. 6 (2020), pp. 67–74, DOI: https://doi.org/10.1007/s40747-019-0114-3.en
dc.referencesR. Fullér, Neural fuzzy systems, Åbo Academi University (1995), URL: https://uni-obuda.hu/users/fuller.robert/ln1.pdf, lecture notes.en
dc.referencesH. Garg, G. Shahzadi, M. Akram, Decision-making analysis based on Fermatean fuzzy Yager aggregation operators with application in COVID-19 testing facility, Mathematical Problems in Engineering, vol. 2020 (2020), DOI: https://doi.org/10.1155/2020/7279027.en
dc.referencesS. Gül, Fermatean fuzzy set extensions of SAW, ARAS, and VIKOR with applications in COVID-19 testing laboratory selection problem, Expert Systems, vol. 38(8) (2021), p. e12769, DOI: https://doi.org/10.1111/exsy.12769.en
dc.referencesA. Hadi, W. Khan, A. Khan, A novel approach to MADM problems using Fermatean fuzzy Hamacher aggregation operators, International Journal of Intelligent Systems, vol. 36(7) (2021), pp. 3464–3499, DOI: https://doi.org/10.1002/int.22423.en
dc.referencesA. Jan, A. Khan, W. Khan, M. Afridi, A novel approach to MADM problems using Fermatean fuzzy Hamacher prioritized aggregation operators, Soft Computing, vol. 25(22) (2021), pp. 13897–13910, DOI: https://doi.org/10.1007/s00500-021-06308-w.en
dc.referencesD. Liu, Y. Liu, X. Chen, Fermatean fuzzy linguistic set and its application in multicriteria decision making, International Journal ofen
dc.referencesIntelligent Systems, vol. 34(5) (2019), pp. 878–894, DOI: https://doi.org/10.1002/int.22079.en
dc.referencesD. Liu, Y. Liu, L. Wang, Distance measure for Fermatean fuzzy linguistic term sets based on linguistic scale function: An illustration of the TODIM and TOPSIS methods, International Journal of Intelligent Systems, vol. 34(11) (2019), pp. 2807–2834, DOI: https://doi.org/10.1002/int.22162.en
dc.referencesA. R. Mishra, P. Rani, K. Pandey, Fermatean fuzzy CRITIC-EDAS approach for the selection of sustainable third-party reverse logistics providers using improved generalized score function, Journal of Ambient Intelligence and Humanized Computing, vol. 13(1) (2022), pp. 295–311, DOI: https://doi.org/10.1007/s12652-021-02902-w.en
dc.referencesL. Sahoo, Some score functions on Fermatean fuzzy sets and its application to bride selection based on TOPSIS method, International Journal of Fuzzy System Applications, vol. 10(3) (2021), pp. 18–29, DOI: https://doi.org/10.4018/IJFSA.2021070102.en
dc.referencesV. Salsabeela, S. J. John, TOPSIS techniques on Fermatean fuzzy soft sets, [in:] AIP conference proceedings, vol. 2336, AIP Publishing LLC (2021), p. 040022, DOI: https://doi.org/10.1063/5.0045914.en
dc.referencesT. Senapati, R. R. Yager, Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision-making methods, Engineering Applications of Artificial Intelligence, vol. 85 (2019), pp. 112–121, DOI: https://doi.org/10.1016/j.engappai.2019.05.012.en
dc.referencesT. Senapati, R. R. Yager, Some new operations over Fermatean fuzzy numbers and application of Fermatean fuzzy WPM in multiple criteria decision making, Informatica, vol. 30(2) (2019), pp. 391–412.en
dc.referencesT. Senapati, R. R. Yager, Fermatean fuzzy sets, Journal of Ambient Intelligence and Humanized Computing, vol. 11(2) (2020), pp. 663–674, DOI: https://doi.org/10.1007/s12652-019-01377-0.en
dc.referencesD. Sergi, I. U. Sari, Fuzzy capital budgeting using fermatean fuzzy sets, [in:] International Conference on Intelligent and Fuzzy Systems, Springer (2020), pp. 448–456, DOI: https://doi.org/10.1007/978-3-030-51156-2_52.en
dc.referencesD. Sergi, I. U. Sari, T. Senapati, Extension of capital budgeting techniques using interval-valued Fermatean fuzzy sets, Journal ofen
dc.referencesIntelligent & Fuzzy Systems, (Preprint) (2022), pp. 1–12, DOI: https://doi.org/10.3233/JIFS-219196.en
dc.referencesI. Silambarasan, Fermatean fuzzy matrices, TWMS Journal of Applied and Engineering Mathematics, (2020), accepted.en
dc.referencesR. Verma, A Decision-Making Approach Based on New Aggregation Operators under Fermatean Fuzzy Linguistic Information Environment, Axioms, vol. 10(2) (2021), DOI: https://doi.org/10.3390/axioms10020113.en
dc.referencesR. R. Yager, Pythagorean fuzzy subsets, [in:] 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), IEEE (2013), pp. 57–61, DOI: https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375.en
dc.referencesZ. Yang, H. Garg, X. Li, Differential Calculus of Fermatean Fuzzy Functions: Continuities, Derivatives, and Differentials, Internationalen
dc.referencesJournal of Compututational Intelligence Systems, vol. 14(1) (2021), pp. 282–294, DOI: https://doi.org/10.2991/ijcis.d.201215.001.en
dc.referencesL. A. Zadeh, Fuzzy sets, [in:] G. J. Klear, B. Yuan (eds.), Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A. Zadeh,en
dc.referencesvol. 6 of Advances in Fuzzy Systems – Applications and Theory, World Scientific (1996), pp. 394–432, DOI: https://doi.org/10.1142/9789814261302_0001.en
dc.referencesQ. Zhang, J. Hu, J. Feng, A. Liu, Multiple criteria decision making method based on the new similarity measures of Pythagorean fuzzy set, Journal of Intelligent & Fuzzy Systems, vol. 39(1) (2020), pp. 809–820, DOI: https://doi.org/10.3233/JIFS-191723.en
dc.referencesX. Zhang, A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making, International Journal of Intelligent Systems, vol. 31(6) (2016), pp. 593–611, DOI: https://doi.org/10.1002/int.21796.en
dc.contributor.authorEmailKhan, Faiz Muhammad - drfaiz@uswat.edu.pk
dc.contributor.authorEmailKhan, Imran - ispi2741@gmail.com
dc.contributor.authorEmailAhmad, Waqas - waqaskahn546@gmail.com
dc.identifier.doi10.18778/0138-0680.2022.08
dc.relation.volume51


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0