Show simple item record

dc.contributor.authorBelikov, Alexander
dc.contributor.authorZaitsev, Dmitry
dc.date.accessioned2022-08-25T13:00:38Z
dc.date.available2022-08-25T13:00:38Z
dc.date.issued2021-11-09
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/42926
dc.description.abstractThe relationship between formal (standard) logic and informal (common-sense, everyday) reasoning has always been a hot topic. In this paper, we propose another possible way to bring it up inspired by connexive logic. Our approach is based on the following presupposition: whatever method of formalizing informal reasoning you choose, there will always be some classically acceptable deductive principles that will have to be abandoned, and some desired schemes of argument that clearly are not classically valid. That way, we start with a new version of connexive logic which validates Boethius’ (and thus, Aristotle’s) Theses and quashes their converse from right to left. We provide a sound and complete axiomatization of this logic. We also study the implication-negation fragment of this logic supplied with Boolean negation as a second negation.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;2en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectmany-valued logicsen
dc.subjectconnexive logicen
dc.subjectfour-valued logic MCen
dc.subjectinformal reasoningen
dc.titleA Variant of Material Connexive Logicen
dc.typeOther
dc.page.number227-242
dc.contributor.authorAffiliationBelikov, Alexander - Lomonosov Moscow State University, Department of Logic, Faculty of Philosophy, 119234, Lomonosovskij prospekt, 27/4, Moscow, Russian Federationen
dc.contributor.authorAffiliationZaitsev, Dmitry - Lomonosov Moscow State University, Department of Logic, Faculty of Philosophy, 119234, Lomonosovskij prospekt, 27/4, Moscow, Russian Federationen
dc.identifier.eissn2449-836X
dc.referencesA. Belikov, Peirce’s Triadic Logic and Its (Overlooked) Connexive Expansion, Logic and Logical Philosophy, vol. 30(3) (2021), pp. 535–559, DOI: https://doi.org/http://dx.doi.org/10.12775/LLP.2021.007en
dc.referencesN. D. Belnap, A Useful Four-Valued Logic, [in:] J. M. Dunn, G. Epstein (eds.), Modern Uses of Multiple-Valued Logic, vol. 2 of Episteme (A Series in the Foundational, Methodological, Philosophical, Psychological, Sociological, and Political Aspects of the Sciences, Pure and Applied), Springer Netherlands, Dordrecht (1977), pp. 5–37, DOI: https://doi.org/10.1007/978-94-010-1161-7_2en
dc.referencesN. D. Belnap, How a Computer Should Think, [in:] H. Omori, H. Wansing (eds.), New Essays on Belnap-Dunn Logic, Springer International Publishing, Cham (2019), pp. 35–53, DOI: https://doi.org/10.1007/978-3-030-31136-0_4en
dc.referencesJ. Cantwell, The Logic of Conditional Negation, Notre Dame Journal of Formal Logic, vol. 49(3) (2008), pp. 245–260, DOI: https://doi.org/10.1215/00294527-2008-010en
dc.referencesW. Cooper, The Propositional Logic of Ordinary Discourse, Inquiry, vol. 11(1-4) (1968), pp. 295–320, DOI: https://doi.org/10.1080/00201746808601531en
dc.referencesJ. M. Dunn, Intuitive semantics for first-degree entailments and ‘coupled trees’, Philosophical Studies, vol. 29(3) (1976), pp. 149–168, DOI: https://doi.org/10.1007/BF00373152en
dc.referencesP. Egré, G. Politzer, On the negation of indicative conditionals, [in:] M. Aloni, M. Franke, F. Roelofsen (eds.), Proceedings of the 19th Amsterdam Colloquium (2013), pp. 10–18, URL: http://events.illc.uva.nl/AC/AC2013/uploaded_files/inlineitem/02_Egre_Politzer.pdfen
dc.referencesL. Estrada-González, The Bochum Plan and the foundations of contra-classical logics, CLE e-Prints, vol. 19(1) (2020), pp. 1–22.en
dc.referencesL. Estrada-González, E. Ramirez-Cámara, A Comparison of Connexive Logics, IfCoLog Journal of Logics and their Applications, vol. 3 (2016), pp. 341–355.en
dc.referencesS. McCall, A History of Connexivity, [in:] D. Gabbay (ed.), Handbook of the History of Logic, vol. 11, Elsevier (2012), pp. 415–449.en
dc.referencesE. Mendelson, Introduction to Mathematical Logic (1987), DOI: https://doi.org/10.1007/978-1-4615-7288-6en
dc.referencesG. Olkhovikov, On a New Three-Valued Paraconsistent Logic, [in:] Logic of Law and Tolerance, Ural University Press (2002), pp. 96–113.en
dc.referencesH. Omori, From Paraconsistent Logic to Dialetheic Logic, [in:] H. Andreas, P. Verdée (eds.), Logical Studies of Paraconsistent Reasoning in Science and Mathematics, vol. 45 of Trends in Logic (Studia Logica Library), Springer (2016), pp. 111–134.en
dc.referencesH. Omori, A Simple Connexive Extension of the Basic Relevant Logic BD, IfCoLog Journal of Logics and their Applications, vol. 3(3) (2016), pp. 467–478.en
dc.referencesH. Omori, Towards a bridge over two approaches in connexive logic, Logic and Logical Philosophy, vol. 28(3) (2019), pp. 553–556, DOI: https://doi.org/10.12775/llp.2019.005en
dc.referencesH. Omori, H. Wansing, An Extension of Connexive Logic C, [in:] N. Olivietti, R. Verbrugge, S. Negri, G. Sandu (eds.), Advances in Modal Logic, vol. 13, College Publications, Rickmansworth (2020), pp. 503–522.en
dc.referencesS. Rahman, On Hypothetical Judgements and Leibniz’s Notion of Conditional Right, [in:] M. Armgardt, P. Canivez, S. Chassagnard-Pinet (eds.), Past and Present Interactions in Legal Reasoning and Logic, Springer International Publishing, Cham (2015), pp. 109–167, DOI: https://doi.org/10.1007/978-3-319-16021-4_7en
dc.referencesH. Wansing, Connexive Modal Logic, [in:] R. Schmidt (ed.), Advances in Modal Logic, vol. 5, College Publications (2005), pp. 367–383.en
dc.referencesH. Wansing, Connexive Logic, [in:] E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, spring 2021 ed., Metaphysics Research Lab, Stanford University (2021), URL: https://plato.stanford.edu/archives/spr2021/entries/logic-connexive/en
dc.referencesH. Wansing, D. Skurt, Negation as Cancellation, Connexive Logic, and qLPm, The Australasian Journal of Logic, vol. 15(2) (2018), pp. 476–488, DOI: https://doi.org/10.26686/ajl.v15i2.4869en
dc.referencesY. Weiss, Semantics For Pure Theories of Connexive Implication, The Review of Symbolic Logic, (2020), pp. 1–16, DOI: https://doi.org/doi:10.1017/S1755020320000374en
dc.contributor.authorEmailBelikov, Alexander - belikov@philos.msu.ru
dc.contributor.authorEmailZaitsev, Dmitry - zaitsev@philos.msu.ru
dc.identifier.doi10.18778/0138-0680.2021.24
dc.relation.volume51


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0