Pokaż uproszczony rekord

dc.contributor.authorKowalczyk, Barbara
dc.date.accessioned2022-09-19T08:20:08Z
dc.date.available2022-09-19T08:20:08Z
dc.date.issued2022-07-12
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/43246
dc.description.abstractNon‑randomised response (NRR) techniques are modern and constantly evolving methods intended for dealing with sensitive topics in surveys, such as tax evasion, black market, corruption etc. The paper introduces a new NRR technique that can be seen as a generalisation of the well‑known crosswise model (CM). In the paper, methodology of the new generalised crosswise model (GCM) is presented and the maximum likelihood estimator of the unknown population sensitive proportion is obtained. Also, the problem of privacy protection is discussed. The properties of the newly proposed GCM are examined. Then the GCM is compared with the traditional CM. The paper shows that mathematically the CM is a special case of the newly proposed generalised CM and that this generalisation has high practical relevance.en
dc.description.abstractTechniki nierandomizowanych odpowiedzi to nowoczesne i stale rozwijające się metody przeznaczone do radzenia sobie z tematami drażliwymi, takimi jak oszustwa podatkowe, czarny rynek, korupcja itp. W artykule zaproponowano nową technikę nierandomizowanych odpowiedzi, którą można traktować jako uogólnienie znanego modelu krzyżowego. Przedstawiono metodykę nowego uogólnionego modelu krzyżowego oraz podano estymator największej wiarygodności dla nieznanej populacyjnej frakcji cechy drażliwej. Omówiono również problem ochrony prywatności. Przeanalizowano własności nowo zaproponowanego modelu, a następnie porównano go z tradycyjnym modelem krzyżowym. Pokazano, że klasyczny model krzyżowy jest specjalnym przypadkiem zaproponowanego modelu uogólnionego. Wykazano również, że to uogólnienie ma duże znaczenie dla praktyki.pl
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Oeconomica;358en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectindirect questioningen
dc.subjectsensitive questionsen
dc.subjectnon‑randomised response techniquesen
dc.subjectcrosswise modelen
dc.subjectML estimationen
dc.subjectdegree of privacy protectionen
dc.subjectankietowanie pośredniepl
dc.subjectpytania drażliwepl
dc.subjecttechniki nierandomizowanych odpowiedzipl
dc.subjectmodel krzyżowypl
dc.subjectestymacja NWpl
dc.subjectstopień ochrony prywatnościpl
dc.titleAn Analysis of the Properties of a Newly Proposed Non‑Randomised Response Techniqueen
dc.title.alternativeAnaliza własności nowo zaproponowanej techniki nierandomizowanych odpowiedzipl
dc.typeArticle
dc.page.number1-13
dc.contributor.authorAffiliationSGH Warsaw School of Economics, Collegium of Economic Analysis Institute of Econometrics, Mathematical Statistics Unit, Warsaw, Polanden
dc.identifier.eissn2353-7663
dc.referencesAbdelfatah S., Mazloum R. (2015), Efficient estimation in a two‑stage randomized response model, “Mathematical Population Studies”, vol. 22, pp. 234–251.en
dc.referencesArnab R., Shangodoyin D. K., Arcos A. (2019), Nonrandomized Response model for Complex Survey Designs, “Statistics in Transition New Series”, vol. 20, pp. 67–86.en
dc.referencesBatool F., Shabbir J., Hussain Z. (2017), An improved binary randomized response model using six decks of cards, “Communications in Statistics – Simulation and Computation”, vol. 46, pp. 2548–2562.en
dc.referencesBlair G., Imai K., Zhou Y.‑Y. (2015), Design and Analysis of the Randomized Response Technique, “Journal of the American Statistical Association”, vol. 110, pp. 1304–1319.en
dc.referencesBoruch R. F. (1971), Assuring Confidentiality of Responses in Social Research: A Note on Strategies, “American Sociologist”, vol. 6, pp. 308–311.en
dc.referencesChong A. C.Y., Chu A. M.Y, So M. K.P, Chung R. S.W. (2019), Asking Sensitive Questions Using the Randomized Response Approach in Public Health Research: An Empirical Study on the Factors of Illegal Waste Disposal, “International Journal of Environmental Research and Public Health”, vol. 16(6), https://www.researchgate.net/publication/331848508_Asking_Sensitive_Questions_Using_the_Randomized_Response_Approach_in_Public_Health_Research_An_Empirical_Study_on_the_Factors_of_Illegal_Waste_Disposal (accessed: 4.01.2022).en
dc.referencesChu A. M.Y., So M. K.P., Chung R. S.W. (2018), Applying the Randomized Response Technique in Business Ethics Research: The Misuse of Information Systems Resources in the Workplace, “Journal of Business Ethics”, vol. 151, pp. 195–212.en
dc.referencesCoutts E., Jann B. (2011), Sensitive questions in online surveys: Experimental results for the randomized response technique (RRT) and the unmatched count technique (UCT), “Sociological Methods & Research”, vol. 40, pp. 169–193.en
dc.referencesErdmann A. (2019), Non‑Randomized Response Models: An Experimental Application of the Triangular Model as an Indirect Questioning Method for Sensitive Topics, “Methods, Data, Analyses”, vol. 13, pp. 139–167.en
dc.referencesFox J. A., Tracy P. E. (1986), Randomised Response: A Method for Sensitive Surveys, Sage Publications, Beverly Hills.en
dc.referencesGingerich D. W. (2010), Understanding Off‑The‑Books Politics: Conducting Inference on the Determinants of Sensitive Behavior with Randomized Response Surveys, “Political Analysis”, vol. 18, pp. 349–380.en
dc.referencesGreenberg B. G., Abul‑Ela A.‑L. A., Horvitz D. G. (1969), The Unrelated Question Randomized Response Model: Theoretical Framework, “Journal of the American Statistical Association”, vol. 64, pp. 520–539.en
dc.referencesGroenitz H. (2014), A new privacy‑protecting survey design for multichotomous sensitive variables, “Metrika”, vol. 77, pp. 211–224.en
dc.referencesHoffmann A., Musch J. (2019), Prejudice against women leaders: Insights from an indirect questioning approach, “Sex Roles”, vol. 80, pp. 681–692.en
dc.referencesHoffmann A., Meisters J., Musch J. (2020), On the validity of non‑randomized response techniques: an experimental comparison of the crosswise model and the triangular model, “Behavior Research”, vol. 52, pp. 1768–1782.en
dc.referencesJohann D., Thomas K. (2017), Testing the Validity of the Crosswise Model: A Study on Attitudes Towards Muslims Survey Methods: Insights from the Field, https://surveyinsights.org/?p=8887 (accessed: 4.01.2022).en
dc.referencesKhalil S., Zhang Q., Gupta S. (2021), Mean estimation of sensitive variables under measurement errors using optional RRT models, “Communications in Statistics – Simulation and Computation”, vol. 50, pp. 1417–1426.en
dc.referencesKorndörfer M., Krumpal I., Schmukle S. C. (2014), Measuring and explaining tax evasion: Improving self‑reports using the crosswise model, “Journal of Economic Psychology”, vol. 45, pp. 18–32.en
dc.referencesLeslie K. J., Loewenstein G. F., Acquisti A., Vosgerau J. (2018), When and Why Randomized Response Techniques (Fail To) Elicit the Truth, “Organizational Behavior and Human Decision Processes”, vol. 148(C), pp. 101–123.en
dc.referencesRueda M. M., Cobo B., López‑Torrecillas F. (2020), Measuring Inappropriate Sexual Behavior Among University Students: Using the Randomized Response Technique to Enhance Self‑Reporting, “Sex Abuse”, vol. 32, pp. 320–334.en
dc.referencesTian G. L. (2014), A new non‑randomized response model: The parallel model, “Statistica Neerlandica”, vol. 68, pp. 293–323.en
dc.referencesVishwakarma G. K., Singh N. (2021), Computing the effect of measurement errors under additive scramble response of the sensitive variable, “Journal of Computational and Applied Mathematics”, vol. 395, 113593.en
dc.referencesWarner S. L. (1965), Randomized Response: A Survey Technique for Eliminating Evasive Answer Bias, “Journal of the American Statistical Association”, vol. 60, pp. 63–69.en
dc.referencesWolter F., Preisendörfer P. (2013), Asking sensitive questions: An evaluation of the randomized response technique versus direct questioning using individual validation data, “Sociological Methods & Research”, vol. 42, pp. 321–353.en
dc.referencesWu Q., Tang M. L. (2016), Non‑randomized response model for sensitive survey with noncompliance, “Statistical Methods in Medical Research”, vol. 25, pp. 2827–2839.en
dc.referencesYu J. W., Tian G. L., Tang M. L. (2008), Two new models for survey sampling with sensitive characteristic: Design and analysis, “Metrika”, vol. 67, pp. 251–263.en
dc.contributor.authorEmailbkowal@sgh.waw.pl
dc.identifier.doi10.18778/0208-6018.358.01
dc.relation.volume1


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by/4.0