Show simple item record

dc.contributor.authorAlizadeh, Majid
dc.contributor.authorMemarzadeh, Masoud
dc.date.accessioned2022-11-07T14:09:14Z
dc.date.available2022-11-07T14:09:14Z
dc.date.issued2022-09-20
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/44035
dc.description.abstract In this paper by using a model-theoretic approach, we prove Craig interpolation property for Formal Propositional Logic, FPL, Basic propositional logic, BPL and the uniform left-interpolation property for FPL. We also show that there are countably infinite extensions of FPL with the uniform interpolation property.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;3en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectbasic propositional logicen
dc.subjectformal propositional logicen
dc.subjectlayered bisimulationen
dc.subjectinterpolationen
dc.titleInterpolation Property on Visser's Formal Propositional Logicen
dc.typeOther
dc.page.number297-316
dc.contributor.authorAffiliationAlizadeh, Majid - University of Tehran, College of Science School of Mathematics, Statistics and Computer Science, 14155-6455 Tehran, Iranen
dc.contributor.authorAffiliationMemarzadeh, Masoud - University of Tehran, College of Science School of Mathematics, Statistics and Computer Science, 14155-6455 Tehran, Iranen
dc.identifier.eissn2449-836X
dc.referencesM. Alizadeh, M. Ardeshir, On Löb algebras, Mathematical Logic Quarterly, vol. 52(1) (2006), pp. 95–105, DOI: https://doi.org/10.1002/malq.200510016en
dc.referencesM. Ardeshir, B. Hesaam, An introduction to basic arithmetic, Logic Journal of the IGPL, vol. 16(1) (2008), pp. 1–13, DOI: https://doi.org/10.1093/jigpal/jzm013en
dc.referencesM. Ardeshir, W. Ruitenburg, Basic propositional calculus I, Mathematical Logic Quarterly, vol. 44(3) (1998), pp. 317–343, DOI: https://doi.org/10.1002/malq.19980440304en
dc.referencesM. Ardeshir, W. Ruitenburg, Basic propositional calculus II. Interpolation, Archive for Mathematical Logic, vol. 40(5) (2001), pp. 349–364, DOI: https://doi.org/10.1007/PL00003844en
dc.referencesS. Ghilardi, M. Zawadowski, A sheaf representation and duality for finitely presented Heyting algebras, Journal of Symbolic Logic, (1995), pp. 911–939, DOI: https://doi.org/10.2307/2275765en
dc.referencesA. M. Pitts, On an interpretation of second order quantification in first order intuitionistic propositional logic, The Journal of Symbolic Logic, (1992), pp. 33–52.en
dc.referencesA. Visser, A propositional logic with explicit fixed points, Studia Logica, vol. 40(2) (1981), pp. 155–175, DOI: https://doi.org/10.1007/BF01874706en
dc.referencesA. Visser, et al., Uniform interpolation and layered bisimulation, [in:] P. Hájek (ed.), Gödel’96: Logical foundations of mathematics, computer science and physics—Kurt Gödel’s legacy, Brno, Czech Republic, August 1996, proceedings, vol. 6 of Lecture Notes in Logic, Springer-Verlag, Berlin (1996), pp. 139–164, DOI: https://doi.org/10.1007/978-3-662-21963-8_9en
dc.contributor.authorEmailAlizadeh, Majid - majidalizadeh@ut.ac.ir
dc.contributor.authorEmailMemarzadeh, Masoud - m.memarzadeh@ut.ac.ir
dc.identifier.doi10.18778/0138-0680.2022.18
dc.relation.volume51


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0