dc.contributor.author | Dziobiak, Wiesław | |
dc.contributor.author | Schwidefsky, Marina | |
dc.date.accessioned | 2022-11-07T14:09:15Z | |
dc.date.available | 2022-11-07T14:09:15Z | |
dc.date.issued | 2022-08-02 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/44037 | |
dc.description.abstract | The categorical dualities presented are: (first) for the category of bi-algebraic lattices that belong to the variety generated by the smallest non-modular lattice with complete (0,1)-lattice homomorphisms as morphisms, and (second) for the category of non-trivial (0,1)-lattices belonging to the same variety with (0,1)-lattice homomorphisms as morphisms. Although the two categories coincide on their finite objects, the presented dualities essentially differ mostly but not only by the fact that the duality for the second category uses topology. Using the presented dualities and some known in the literature results we prove that the Q-lattice of any non-trivial variety of (0,1)-lattices is either a 2-element chain or is uncountable and non-distributive. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;3 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | categorical duality | en |
dc.subject | bi-algebraic lattice | en |
dc.subject | bounded lattice | en |
dc.subject | quasivariety lattice | en |
dc.title | Categorical Dualities for Some Two Categories of Lattices: An Extended Abstract | en |
dc.type | Other | |
dc.page.number | 329-344 | |
dc.contributor.authorAffiliation | Dziobiak, Wiesław - University of Puerto Rico, Mayagüez Campus, 00681-9018, Mayagüez, Puerto Rico, USA | en |
dc.contributor.authorAffiliation | Schwidefsky, Marina - Sobolev Institute of Mathematics SB RAS, Laboratory of Logical Structures, 630090, Acad. Koptyug prosp. 4, Novosibirsk, Russia | en |
dc.identifier.eissn | 2449-836X | |
dc.references | M. E. Adams, K. V. Adaricheva, W. Dziobiak, A. V. Kravchenko, Open questions related to the problem of Birkhoff and Maltsev, Studia Logica, vol. 78 (2004), pp. 357–378, DOI: https://doi.org/10.1007/s11225-005-7378-x | en |
dc.references | M. E. Adams, W. Dziobiak, Finite-to-finite universal quasivarieties are Q- universal, Algebra Universalis, vol. 46 (2001), pp. 253–283, DOI: https://doi.org/10.1007/PL00000343 | en |
dc.references | M. E. Adams, W. Dziobiak, A. V. Kravchenko, M. V. Schwidefsky, Complete homomorphic images of the quasivariety lattices of locally finite quasivarieties (2020). | en |
dc.references | M. E. Adams, V. Koubek, J. Sichler, Homomorphisms and endomorphisms of distributive lattices, Houston Journal of Mathematics, vol. 11 (1984), pp. 129–145, DOI: https://doi.org/10.2307/1999472 | en |
dc.references | W. H. Cornish, On H. Priestley’s dual of the category of bounded distributive lattices, Matematiˇcki Vesnik, vol. 12 (1975), pp. 329–332. | en |
dc.references | Y. L. Ershov, Solimit points and u-extensions, Algebra and Logic, vol. 56 (2017), pp. 295–301, DOI: https://doi.org/10.1007/s10469-017-9450-9 | en |
dc.references | Y. L. Ershov, M. V. Schwidefsky, To the spectral theory of partially ordered sets, Siberian Mathematical Journal, vol. 60 (2019), pp. 450–463, DOI: https://doi.org/10.1134/S003744661903008X | en |
dc.references | Y. L. Ershov, M. V. Schwidefsky, To the spectral theory of partially ordered sets. II, Siberian Mathematical Journal, vol. 61 (2020), pp. 453—462, DOI: https://doi.org/10.1134/S0037446620030064 | en |
dc.references | R. Freese, J. B. Nation, J. Ježek, Free Lattices, no. 42 in Mathematical Surveys and Monographs, American Mathematical Society, Providence (1995). | en |
dc.references | P. Goralčík, V. Koubek, J. Sichler, Universal varieties of (0,1)-lattices, Canadian Journal of Mathematics, vol. 42 (1990), pp. 470–490, DOI: https://doi.org/10.4153/CJM-1990-024-0 | en |
dc.references | V. A. Gorbunov, Algebraic Theory of Quasivarieties, Siberian School of Algebra and Logic, Plenum, Consultants Bureau, New York (1998). | en |
dc.references | A. P. Huhn, Schwach distributive Verbände. I, Acta Scientiarum Mathematicarum (Szeged), vol. 33 (1972), pp. 297–305. | en |
dc.references | M. A. Moshier, P. Jipsen, Topological duality and lattice expansions, I: A topological construction for canonical extensions, Algebra Universalis, vol. 71 (2014), pp. 109–126, DOI: https://doi.org/10.1007/s00012-014-0275-2 | en |
dc.references | J. B. Nation, An approach to lattice varieties of finite height, Algebra Universalis, vol. 27 (1990), pp. 521–543, DOI: https://doi.org/10.1007/BF01188998 | en |
dc.references | H. A. Priestley, Ordered topological spaces and representation of distributive lattices, Proceedings of the London Mathematical Society, vol. 24 (1972), pp. 507–530, DOI: https://doi.org/10.1112/plms/s3-24.3.507 | en |
dc.references | M. H. Stone, Topological representation of distributive lattices and Brouwerian logics, Časopis pro pěstování matematiky a fysiky, vol. 67 (1938), pp. 1–25. | en |
dc.contributor.authorEmail | Dziobiak, Wiesław - w.dziobiak@gmail.com | |
dc.contributor.authorEmail | Schwidefsky, Marina - semenova@math.nsc.ru | |
dc.identifier.doi | 10.18778/0138-0680.2022.14 | |
dc.relation.volume | 51 | |