Pokaż uproszczony rekord

dc.contributor.authorDziobiak, Wiesław
dc.contributor.authorSchwidefsky, Marina
dc.date.accessioned2022-11-07T14:09:15Z
dc.date.available2022-11-07T14:09:15Z
dc.date.issued2022-08-02
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/44037
dc.description.abstractThe categorical dualities presented are: (first) for the category of bi-algebraic lattices that belong to the variety generated by the smallest non-modular lattice with complete (0,1)-lattice homomorphisms as morphisms, and (second) for the category of non-trivial (0,1)-lattices belonging to the same variety with (0,1)-lattice homomorphisms as morphisms. Although the two categories coincide on their finite objects, the presented dualities essentially differ mostly but not only by the fact that the duality for the second category uses topology. Using the presented dualities and some known in the literature results we prove that the Q-lattice of any non-trivial variety of (0,1)-lattices is either a 2-element chain or is uncountable and non-distributive.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;3en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectcategorical dualityen
dc.subjectbi-algebraic latticeen
dc.subjectbounded latticeen
dc.subjectquasivariety latticeen
dc.titleCategorical Dualities for Some Two Categories of Lattices: An Extended Abstracten
dc.typeOther
dc.page.number329-344
dc.contributor.authorAffiliationDziobiak, Wiesław - University of Puerto Rico, Mayagüez Campus, 00681-9018, Mayagüez, Puerto Rico, USAen
dc.contributor.authorAffiliationSchwidefsky, Marina - Sobolev Institute of Mathematics SB RAS, Laboratory of Logical Structures, 630090, Acad. Koptyug prosp. 4, Novosibirsk, Russiaen
dc.identifier.eissn2449-836X
dc.referencesM. E. Adams, K. V. Adaricheva, W. Dziobiak, A. V. Kravchenko, Open questions related to the problem of Birkhoff and Maltsev, Studia Logica, vol. 78 (2004), pp. 357–378, DOI: https://doi.org/10.1007/s11225-005-7378-xen
dc.referencesM. E. Adams, W. Dziobiak, Finite-to-finite universal quasivarieties are Q- universal, Algebra Universalis, vol. 46 (2001), pp. 253–283, DOI: https://doi.org/10.1007/PL00000343en
dc.referencesM. E. Adams, W. Dziobiak, A. V. Kravchenko, M. V. Schwidefsky, Complete homomorphic images of the quasivariety lattices of locally finite quasivarieties (2020).en
dc.referencesM. E. Adams, V. Koubek, J. Sichler, Homomorphisms and endomorphisms of distributive lattices, Houston Journal of Mathematics, vol. 11 (1984), pp. 129–145, DOI: https://doi.org/10.2307/1999472en
dc.referencesW. H. Cornish, On H. Priestley’s dual of the category of bounded distributive lattices, Matematiˇcki Vesnik, vol. 12 (1975), pp. 329–332.en
dc.referencesY. L. Ershov, Solimit points and u-extensions, Algebra and Logic, vol. 56 (2017), pp. 295–301, DOI: https://doi.org/10.1007/s10469-017-9450-9en
dc.referencesY. L. Ershov, M. V. Schwidefsky, To the spectral theory of partially ordered sets, Siberian Mathematical Journal, vol. 60 (2019), pp. 450–463, DOI: https://doi.org/10.1134/S003744661903008Xen
dc.referencesY. L. Ershov, M. V. Schwidefsky, To the spectral theory of partially ordered sets. II, Siberian Mathematical Journal, vol. 61 (2020), pp. 453—462, DOI: https://doi.org/10.1134/S0037446620030064en
dc.referencesR. Freese, J. B. Nation, J. Ježek, Free Lattices, no. 42 in Mathematical Surveys and Monographs, American Mathematical Society, Providence (1995).en
dc.referencesP. Goralčík, V. Koubek, J. Sichler, Universal varieties of (0,1)-lattices, Canadian Journal of Mathematics, vol. 42 (1990), pp. 470–490, DOI: https://doi.org/10.4153/CJM-1990-024-0en
dc.referencesV. A. Gorbunov, Algebraic Theory of Quasivarieties, Siberian School of Algebra and Logic, Plenum, Consultants Bureau, New York (1998).en
dc.referencesA. P. Huhn, Schwach distributive Verbände. I, Acta Scientiarum Mathematicarum (Szeged), vol. 33 (1972), pp. 297–305.en
dc.referencesM. A. Moshier, P. Jipsen, Topological duality and lattice expansions, I: A topological construction for canonical extensions, Algebra Universalis, vol. 71 (2014), pp. 109–126, DOI: https://doi.org/10.1007/s00012-014-0275-2en
dc.referencesJ. B. Nation, An approach to lattice varieties of finite height, Algebra Universalis, vol. 27 (1990), pp. 521–543, DOI: https://doi.org/10.1007/BF01188998en
dc.referencesH. A. Priestley, Ordered topological spaces and representation of distributive lattices, Proceedings of the London Mathematical Society, vol. 24 (1972), pp. 507–530, DOI: https://doi.org/10.1112/plms/s3-24.3.507en
dc.referencesM. H. Stone, Topological representation of distributive lattices and Brouwerian logics, Časopis pro pěstování matematiky a fysiky, vol. 67 (1938), pp. 1–25.en
dc.contributor.authorEmailDziobiak, Wiesław - w.dziobiak@gmail.com
dc.contributor.authorEmailSchwidefsky, Marina - semenova@math.nsc.ru
dc.identifier.doi10.18778/0138-0680.2022.14
dc.relation.volume51


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0